期刊文献+

基于AdaBoost的弹性网型正则化多核学习算法 被引量:1

Elastic-net Regularization Multi Kernel Learning Algorithm Based on AdaBoost
下载PDF
导出
摘要 在正则化多核学习中,稀疏的核函数权值会导致有用信息丢失和泛化性能退化,而通过非稀疏模型选取所有核函数则会产生较多的冗余信息并对噪声敏感。针对上述问题,基于AdaBoost框架提出一种弹性网型正则化多核学习算法。在迭代选取基本分类器时对核函数的权值进行弹性网型正则化约束,即混合L 1范数和L p范数约束,构造基于多个基本核最优凸组合的基本分类器,并将其集成到最终的强分类器中。实验结果表明,该算法在保留集成算法优势的同时,能够实现核函数权值稀疏性和非稀疏性的平衡,与L 1-MKL和L p-MKL算法相比,能够以较少的迭代次数获得分类精度较高的分类器。 In regularization multi kernel learning,the sparse kernel function weight leads to the loss of useful information and the degradation of generalization performance,while selecting all kernel functions through non-sparse models generates more redundant information and is sensitivity to noise.Aiming at these problems,an elastic-net regularization multi kernel learning algorithm based on AdaBoost architecture is proposed.When the basic classifier is selected at each iteration,the weight of the kernel function is added with the elastic-net regularization,that is,mixed L 1 norm and L p norm constraints.The basic classifier are constructed based on multi basic kernel optimal convex combinations,which are integrated into the final strong classifier.Experimental results show that the proposed algorithm can balance the sparsity and non-sparsity of the weight in kernel function while preserving the advantages of the integrated algorithm.Compared with L 1-MKL and L p-MKL algorithms,it can obtain the classifier with higher classification accuracy in fewer iterations.
作者 任胜兵 谢如良 REN Shengbing;XIE Ruliang(School of Software,Central South University,Changsha 410075,China)
出处 《计算机工程》 CAS CSCD 北大核心 2019年第10期189-195,共7页 Computer Engineering
基金 中南大学研究生自主探索创新项目(1053320170432)
关键词 集成学习 多核学习 弹性网型正则化 弱分类器 稀疏性 ensemble learning multi kernel learning elastic-net regularization weak classifier sparsity
  • 相关文献

参考文献5

二级参考文献50

  • 1Lin Y Y,Liu T L,Fuh C S.Multiple kernel learning for dimensionality reduction[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(6):1147-1160.
  • 2Lanckriet G R G,Cristianini N,Bartlett P,et al.Learning the kernel matrix with semidefinite programming[J].The Journal of Machine Learning Research,2004,5(1):27-72.
  • 3Yukawa M.A sparsity-based design of regularization parameter for adaptive proximal forward-backward splitting algorithm[C]∥Proc of 10th ISWCS.Ilmenau:IEEE Computer Society,2013:1-4.
  • 4Yan F,Kittler J,Mikolajczyk K,et al.Non-sparse multiple kernel learning for fisher discriminant analysis[C]∥Proceedings of ICDM.Miami:Institute of Electrical and Electronics Engineers Inc,2009:1064-1069.
  • 5Sonnenburg S,Tsch G R,Schfer C,et al.Large scale multiple kernel learning[J].Machine Learning Research,2006,7(l):1531-1565.
  • 6Ye J,Ji S,Chen J.Multi-class discriminant kernel learning via convex programming[J].The Journal of Machine Learning Research,2008,9(4):719-758.
  • 7Bouaziz S,Alimi A M,Abraham A.Extended immune programming and opposite-based PSO for evolving flexible beta basis function neural tree[C]∥Prof of 20131EEE International Conference.Lausanne:IEEE Computer Society,2013:13-18.
  • 8Liang Z,Li Y.Multiple kernels for generalised discriminant analysis[J].IET Computer Vision,2010,4(2):117-128.
  • 9Ojala T,Pietikainen M,Maenpaa T.Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,24(7):971-987.
  • 10Boser B E,Guyon I M,Vapnik V N.A training algorithm for optimal margin classifiers[C] //Proc of the 5th Annual ACM Workshop on Computational Learning Theory.New York:ACM Press,1992:144-152.

共引文献277

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部