期刊文献+

基于二阶非对称随机共振的轴承故障特征提取

Feature Extraction of Bearing Fault based on Second-Order Asymmetric Stochastic Resonance
下载PDF
导出
摘要 在强噪声背景下,针对故障信号特征提取困难这一问题,提出了二阶非对称随机共振方法.该方法首先以输出信噪比作为人群搜索算法的目标函数,然后对二阶非对称随机共振模型的参数同时优化,最后将优化的参数代入随机共振模型实现微弱特征信号的增强与提取.仿真和工程数据表明,二阶非对称随机共振方法能有效提取微弱特征信号,实现轴承故障诊断.同时,与传统随机共振方法相比,二阶非对称随机共振的滤波性能更加优越. A second-order asymmetric stochastic resonance method was proposed to extractthe characteristic signals in the heavy background noise.The signal to noise ration(SNR)of output signal was set as the objection function of seeker optimization algorithm(SOA),and seeker optimization algorithm was used to optimize the parameters of the second-order asymmetric stochastic resonance model.The optimized parameters were substituted into the stochastic resonance model to enhance and extract the weak feature signals.The simulation data and the real fault data of a bearing show that the second-order asymmetric stochastic resonance method can effectively detect weak characteristic signals and realize fault diagnosis of bearings,and its filtering performance is better than traditional stochastic resonance method.
作者 苑宇 王衡 王鹏 YUAN Yu;WANG Heng;WANG Peng(School of Locomotive and Vehicle Engineering,Dalian Jiaotong University,Dalian 116028,Chima;School of Mechanical Engineering,Dalian Jiaotong University,Dalian 116028,Chima)
出处 《大连交通大学学报》 CAS 2019年第5期44-49,共6页 Journal of Dalian Jiaotong University
关键词 二阶非对称随机共振 微弱特征信号 人群搜索算法 故障诊断 second-order asymmetric stochastic resonance weak characteristic signals SOA fault diagnosis
  • 相关文献

参考文献4

二级参考文献40

  • 1卢志恒,林建恒,胡岗.随机共振问题Fokker-Planck方程的数值研究[J].物理学报,1993,42(10):1556-1566. 被引量:21
  • 2江金龙,薛云灿,杨启文.基于遗传算法和直接搜索策略的PID整定研究[J].计算机仿真,2005,22(12):139-142. 被引量:8
  • 3李俊勇,田作华,钱华新.一种改进遗传算法在抽油机节能器中的应用[J].计算机仿真,2006,23(9):172-174. 被引量:3
  • 4欧阳惠斌,阳武娇.PID参数整定法的仿真[J].计算机仿真,2007,24(7):323-325. 被引量:22
  • 5Benzi R, Sutera A, Vulpinai A. The mechanism of stochastic resonance [ J ]. Journal of Physics A: Mathematical and General, 1981, 14(1I):453-457.
  • 6Mitaim S, Kosko B. Adaptive stochastic resonance [ J ]. Proceedings of the IEEE, 1998, 86 (11) : 2152 - 2183.
  • 7LI Jian-long, XU Bo-hou. Effects of signal spectrum varying on signal processing by parameter-induced stochastic resonance [ J ]. Physica A : Statistical Mechanics and its Applications, 2006, 361 ( 1 ) : 11 - 23.
  • 8LI Qiang, WANG Tai-yong, LENG Yong-gang, et al. Engineering signal processing based on adaptive step-changed stochastic resonance [ J]. Mechanical Systems and Signal Processing, 2007, 21(5): 2267-2279.
  • 9Teodorovic D. Swarm intelligence systems for transportation engineering : principles and applications [ J ]. Transportation Research Part C, 2008, 16(6) : 651 -667.
  • 10Bernardino E M, Bernarno A M, Sanehes-Perez J M, et al. Swarm optimisation algorithms applied to large balanced communication networks J ]. Journal of Network and Computer Applications, 2013, 36( 1 ) : 504 -522.

共引文献236

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部