期刊文献+

材料塑性损伤的共轴异向波束混频定位及表征方法 被引量:2

Localizing the Plastic Deformation Zone Using the Collinear Two-Way Mixing Method
下载PDF
导出
摘要 共线波束混频方法是一种有效的非线性超声检测方法.当满足共振条件时,一对频率为f1的剪切波和频率为f2的纵波发生共振,产生频率为f2-f1(假设f2大于f1)的共振波.共振波的幅值与超声非线性参数βT成正比.通过调整两激励主波的时延,使得它们在试样中的不同位置混合,可以获得超声非线性参数βT在试样中的分布.试样的塑性变形会引起材料内部三阶弹性常数的变化,而由上述方法得到的超声非线性参数βT恰恰对三阶弹性常数的变化比较敏感.因此,本文利用上述特性实现了对试样塑性变形的定位与表征. The distribution of the plastic deformation zone in the metal component is very important.The collinear wave mixing method is an effective nonlinear ultrasonic detection method.Under the phase matching condition,a transverse wave with frequency f1 and a longitudinal wave with frequency f2 resonate to generate a resonant wave with frequency f2-f1(assuming f 2 is greater than f1).The amplitude of the resonant wave is proportional to the ultrasonic nonlinear parameterβT.By adjusting the delay of the two excitation main waves so that they are mixed in different positions in the sample,the distribution of ultrasonic nonlinear parameterβT in the sample can be obtained.Plastic deformation may result in the variation of the third-order elastic constants,the acoustic non-linearity parameters obtained by the above method are just sensitive to the variation.Thus,localizing the plastic deformation zone and express the distribution of it can be achieved by the above relationship.
作者 王浩坤 何军榜 王召巴 WANG Haokun;HE Junbang;WANG Zhaoba(School of Information and Communication Engineering,North University of China,Taiyuan 030051,China;CNP XIBU Drilling Engineering Company Limited,Karamay 834000,China)
出处 《测试技术学报》 2019年第5期381-385,共5页 Journal of Test and Measurement Technology
基金 国家自然基金资助项目(11604304) 山西省高等学校科技创新资助项目(201657) 山西省青年科技研究基金资助项目(201701D12111457) 山西省普通本科高等教育教学改革研究资助项目 山西省自然科学基金资助项目(201801D121160)
关键词 塑性变形 共线波束混频 共振波 超声非线性参数 三阶弹性常数 plastic deformation collinear wave mixing method ultrasonic nonlinear parameter the resonant wave the third-order elastic constants
  • 相关文献

参考文献1

二级参考文献53

  • 1陈斌,杨平,施克仁.Hilbert-Huang变换在非线性超声无损检测中的应用[J].清华大学学报(自然科学版),2006,46(8):1369-1372. 被引量:13
  • 2BRIKS A S, GREEN R E. Nondestructive testing handbook: Ultrasonic testing [M]. 2nd ed. American Society for Nondestructive Testing, 1991,.
  • 3CARR P H, Harmonics generation of microwave phonons in quarts[J]. Physical Review Letters, 1964, 13(10): 332-335.
  • 4DONSKOY D, SUTIN A, EKIMOV A. Nonlinear acoustic interaction on contact interfaces and its use for nondestructive testing[J]. NDT&E International, 2001, 34(4): 231-238.
  • 5KORSHAK B A, SOLODOV I Y, BALLAD E M. DC effects, sub-harmonics, stochasticity and "memory" for contact acoustic non-linearty[J]. Ultrasonics, 2002, 40(1). 707-713.
  • 6JOHNSON P A. Resonant nonlinear ultrasound spectroscopy: United States, 6330827[P]. 2001-12-18.
  • 7SOLODOV I Y. Non-classical applications of nonlinear acoustics for material characterization[R]. Extended presentation at Ritec workshop organized on Nov. 3-5, 2008, Augustinusstr.9a, D-50226 Frechen, Germany.
  • 8JHANG K Y. Nonlinear ultrasonic techniques for non-destructive assessment of micro damage in material: a review[J]. International Journal of Precision Engineering and Manufacturing, 2009, 10(1): 123-135.
  • 9BRILLOUIN L. Tensors in mechanics and elasticity[M]. Maryland: Academic Press, 1964.
  • 10YAN D, DRINKWATER B W, NEILD S A. Measurement of the ultrasonic nonlinearity of kissing bonds in adhesive joints[J]. NDT & E International, 2009, 42(7): 459-466.

共引文献123

同被引文献22

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部