期刊文献+

基于小脑内模机理的自平衡机器人平衡控制

Balance control of self-balancing robot based on cerebellar internal model mechanism
下载PDF
导出
摘要 根据人脑系统中的感觉运动系统和中枢神经系统控制结构,模拟小脑的内模机理,建立了基于反馈误差学习的自适应逆模型,作为自平衡机器人的控制中枢,为机器人构建了具有生物学特性的感觉运动系统。小脑模型部分采用BP神经网络进行模拟,网络权值作为小脑模型内部的突触,通过突触修饰完成系统的自适应学习,与传统的反馈控制方法进行了对比分析,结果显示:采用本文提出的控制方法能够有效增强系统控制的稳定性。 In accordance with the control structure of sensorimotor system and central nervous system in human brain system,by simulating the internal model mechanism of cerebellum,an adaptive inverse model based on feedback-error-learn-ing is established,which functions as the control center of self-balancing robots.Hence,a sensorimotor system with biological characteristics is constructed.BP neural network is used to simulate the cerebellar model.With the network weights as the synapses in the cerebellar model,synaptic modification is used to complete the adaptive learning of the system.In comparison with the traditional feedback control method,the results show that the proposed control method can effectively enhance the stability of the system control.
作者 陈静 CHEN Jing(School of Information Technology Engineering,Tianjin University of Technology and Education,Tianjin 300222,China)
出处 《天津职业技术师范大学学报》 2019年第3期1-5,10,I0002,共7页 Journal of Tianjin University of Technology and Education
基金 国家自然科学基金青年项目(61403282)
关键词 小脑内模 平衡控制 反馈误差学习 cerebellar internal model balancing control feedback-error-learning
  • 相关文献

参考文献2

二级参考文献23

  • 1童桦,刘一江,易理刚.神经网络在线学习补偿自适应控制及其应用[J].控制理论与应用,2004,21(4):579-583. 被引量:8
  • 2WidrowB WalachE 刘树棠 韩崇昭 译.自适应逆控制[M].西安交通大学出版社,2000..
  • 3WANG Weiyen, CHENG Chih-yuan, Leu Yih-guang. An online GA-based output-feedback direct adaptive fuzzy-neural controller for uncertain nonlinear systems[J]. IEEE Trans on System, Man and Cybernetics-Part B: Cybernetics, 2004, 34(1): 334- 345.
  • 4DOYA K, KIMURA H, KAWATO M. Neural mechanisms of learning and control[J]. IEEE Control Systems Magazine, 2001, 21(4):42 - 54.
  • 5ZHANG D Q, PANDA S K. Chattering-free and fast-re- sponse sliding mode controller[J]. IEE Proceedings-Con- trol Theory and Applications, 1999,146(2) : 171-177.
  • 6FENG Y, YU X, MAN Z. Non-singular terminal sliding mode control of rigid manipulators[J]. Automatiea, 2002, 38(12) : 2159-2167.
  • 7WANG L, CHAI T, ZHAI L. Neural-network-based termi- nal sliding- mode control of robotic manipulators including actuator dynamics [J~. IEEE Transactions on Industrial Electronics, 2009,56(9) : 3296- 3304.
  • 8CASCELLA G, CUPERTINO F, TOPALOV A, et al. Adap- tive control of electric drives using sliding-mode learning neural networks [C]//Proeeedings of the IEEE International Symposium on Industrial Electronics. Dubrovnik: IEEE, 2005 : 125-130.
  • 9CIGDEM O, KAYACAN E, KHANESAR M A, et al. A nov- el training method based on variable structure systems theo- ry for fuzzy neural networks[C]//IEEE Symposium on Com- putational Intel- ligence in Control and Automation (CI- CA). Paris : IEEE, 2011 : 44-51.
  • 10RUAN X, DING M, GONG D, et al. On-line adaptive con- trol for inverted pendulum balancing based on feedback-er- ror-learning[J]. Neuroeomputing,2007,70(4):770-776.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部