期刊文献+

基于卷积神经网络的乙烯球罐泄漏检测研究 被引量:3

Study on Leakage Detection of Ethylene Spherical Tank Based on Convolutional Neural Network
下载PDF
导出
摘要 乙烯球罐泄漏会对安全生产造成严重威胁。为了解决泄漏初期不易检测到的难题,研究应用卷积神经网络进行自动泄漏识别的方法。以不同角度下的正常工况和泄漏工况的场景图像作为训练对象,搭建基于卷积神经网络的识别模型,研究确定采用最大池化法和ReLU激活函数的网络设置,可使网络性能达到最优。测试结果表明,本文提出的方法和模型能有效实现乙烯球罐泄漏的自动检测。 The leakage of ethylene spherical tank will pose a serious threat to safety in production.Considering the difficulty of leakage detection at early stage,the convolution neural network method for automatic leak identification was studied.The recognition model based on convolution neural network was built with scene images of normal and leakage conditions from different angles as training objects.The network settings of maximum pooling method and ReLU activation function were studied and selected,which optimized the network performance.The test results showed that the proposed method and model could effectively realize the automatic leak detection of ethylene spherical tank.
作者 滕潇 李传坤 李乐宁 Teng Xiao;Li Chuankun;Li Lening(SINOPEC Research Institute of Safety Engineering,Shandong,Qingdao 266071)
出处 《安全、健康和环境》 2019年第8期20-25,共6页 Safety Health & Environment
关键词 卷积神经网络 球罐泄漏 图像识别 convolutional neural network spherical tank leakage image recognition
  • 相关文献

参考文献7

二级参考文献50

  • 1李伟.大型乙烯球罐材质的选用[J].甘肃科技,2002,18(9):61-63. 被引量:3
  • 2陆鹏宇.炼化企业开展LDAR工作必要性探讨[J].石油化工安全环保技术,2013,29(5):21-25. 被引量:20
  • 3窦万波.我国乙烯球罐现状及国产化中技术要点分析[J].压力容器,2006,23(6):39-42. 被引量:26
  • 4魏儒义,雷俊锋,杨琨,尹邦胜,曾立波.傅里叶变换红外光谱仪中立方反射镜特性分析[J].光学仪器,2007,29(3):69-75. 被引量:6
  • 5全国化工设备设计技术中心站机泵技术委员会.工业泵选用手册[M].北京:化学工业出版社,1998.
  • 6参数与数据编辑部,中国石油化工项目可行性研究技术经济2010参数与数据[M].北京:中国石油化工参数与数据编辑部,2010.
  • 7BENGIO Y, DELALLEAU O. On the expressive power of deep archi- tectures[ C ]//Proc of the 14th International Conference on Discovery Science. Berlin : Springer-Verlag, 2011 : 18 - 36.
  • 8BENGIO Y. Leaming deep architectures for AI[ J]. Foundations and Trends in Machine Learning ,2009,2 ( 1 ) : 1-127.
  • 9HINTON G,OSINDERO S,TEH Y. A fast learning algorithm for deep belief nets [ J ]. Neural Computation ,2006,18 (7) : 1527-1554.
  • 10BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Proc of the 12th Annual Conference on Neural Information Processing System. 2006:153-160.

共引文献698

同被引文献32

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部