期刊文献+

基于残差全卷积网络的图像拼接定位算法 被引量:5

Image Splicing Localization Method Based on Fully Convolutional Residual Networks
下载PDF
导出
摘要 为解决现有篡改定位网络随着深度加深不易收敛的问题,提出一种基于残差全卷积网络的图像拼接定位算法.所提算法一方面迁移残差思想,在全卷积神经网络(fully convolutional network,FCN)的部分卷积层中引入shortcut连接,使其输出的不仅是输入的映射,还是输入映射与输入的叠加.另一方面结合条件随机场(conditional random field,CRF)对定位结果进行后处理,并将FCN与CRF整合在一个端到端的学习系统中,进一步提高定位精度.此外,所提算法还融合3种FCN(FCN8、FCN16、FCN32)的预测结果.在实验中,随机选取公开数据集CASIA v2.0的5/6篡改图像作为训练集,然后对剩余1/6进行测试.为了测试提出算法的泛化性能,采用训练好的模型在公开数据集CASIA v1.0和DVMM上进行交叉测试.在3个数据集上的测试结果表明,所提算法的性能优于现有一些方法. In order to solve the problem that the existing forgery localization networks are not easy to converge with the increase of the depth of networks,an image splicing localization algorithm based on fully convolution residual networks is proposed in this paper.On the one hand,the proposed algorithm transfers the idea of residual structure and introduces shortcut connection into part of convolution layers in fully convolutional network(FCN),so that the output is not a mapping input alone but the superposition of a mapping input and an input itself.On the other hand,conditional random field(CRF)is used as post-processing operation to improve splicing localization accuracy.Moreover,FCN and CRF are integrated in an end-to-end learning system.In addition,the proposed algorithm combines the prediction results of three kinds of FCNs(FCN8,FCN16 and FCN32).In our experiment,5/6 of the spliced images in the public available dataset CASIA v2.0 are randomly selected as training set and the rest are used for testing.In order to test generalization performance of the proposed algorithm,the trained model is also cross-tested on another two public available datasets CASIA v1.0 and DVMM.The overall test results on three datasets show that the proposed algorithm performs better than some existing algorithms.
作者 吴韵清 吴鹏 陈北京 鞠兴旺 高野 WU Yunqing;WU Peng;CHEN Beijing;JU Xingwang;GAO Ye(School of Computer and Software,Nanjing University of Information Science and Technology,Nanjing 210044,China;Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology,Nanjing University of Information Science and Technology,Nanjing 210044,China;Key Laboratory of Computer Network Technology of Jiangsu Province,Southeast University,Nanjing 210096,China)
出处 《应用科学学报》 CAS CSCD 北大核心 2019年第5期651-662,共12页 Journal of Applied Sciences
基金 国家自然科学基金(No.61572258,No.61772281,No.61602253) 江苏省大学生创新创业训练计划(No.201910300022Z) 江苏高校优势学科建设工程资助项目 江苏“高校青蓝工程”项目资助
关键词 拼接定位 全卷积神经网络 条件随机场 残差网络 splicing localization fully convolutional network(FCN) conditional random field(CRF) ResNet
  • 相关文献

参考文献2

二级参考文献31

  • 1朱秀明,宣国荣,姚秋明,童学锋,施云庆.信息取证中图像重采样检测[J].计算机应用,2006,26(11):2596-2597. 被引量:7
  • 2FARID H. Image Forgery Detection [ J]. IEEE Signal Processing Magazine, 2009, 26(2) : 16-25.
  • 3GERADTS Z J, BUHOLD J, KIEFT M,et al. Methods for Identification of Images Acquired with Digital Cameras [C] //Proceedings of the 2001 SPIE Conference on Enabling Technologies for Law Enforcement and Security. Boston, USA: SPIE,2001: 505-512.
  • 4CHOI K S, LAM E Y,WONG K K Y. Automatic Source Camera Identification Using the Intrinsic Lens Radial Distortion [ J ] .Optics Express, 2006,14(24) : 11551-11565.
  • 5LUKAS J,FRIDRICH J,GOLJAN M. Digital Camera Identification from Sensor Pattern Noise [ J] . IEEE Transactions onInformation Forensics and Security, 2006, 1(2) : 205-214.
  • 6CHEN M,FRIDRICH J, GOLJAN M,et al. Determining Image Origin and Integrity Using Sensor Noise [ J ]. IEEETransactions on Information Forensics and Security, 2008,3(1): 74-90.
  • 7BAYRAM S, SENCAR H T,MEMON N, et al. Source Camera Identification Based on CFA Interpolation [C] //Proceedingsof the 2005 IEEE International Conference on Image Processing. Genoa, Italy: IEEE, 2005(3) : 69-72.
  • 8SWAMINATHAN A, WU Min, LIU K J R. Component Forensics of Digital Cameras: A Non-Intrusive Approach [C] //Proceedings of the 2006 40th IEEE Annual Conference on Information Science and System. Princeton, NJ, USA : IEEE, 2006 :1194-1199.
  • 9NG T T,CHANG S F, SUN Q. Blind Detection of Photomontage Using Higher Order Statistics [ C] //Proceedings of the 2004International Symposium on Circuits and Systems. Vancouver, Canada: IEEE, 2004: 688-691.
  • 10HSU Y F, CHANG S F. Image Splicing Detection Using Camera Response Function Consistency and Automatic Segmentation[C] //Proceedings of the 2007 IEEE International Conference on Multimedia and Expo. Beijing, China; IEEE, 2007 : 28-31.

共引文献4

同被引文献48

引证文献5

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部