摘要
采用自行研究设计的介质阻挡-电晕放电等离子体反应装置在模拟烟气中进行NO、SO2的脱除研究。考察了O2、CO2、水蒸气等气体组分对脱除NO、SO2的影响,并进一步探讨了添加剂CH3COONH4对脱除NO、SO2的影响及作用机理。实验结果表明:O2、CO2和水蒸气浓度的增加对NO脱除有抑制作用,而引入CH3COONH4后,这些抑制作用会被减弱,使NO的脱除率得到大幅度提升,但这些抑制作用不会完全消除。在引入CH3COONH4后,气体组分和输入电流的变化对脱除SO2的影响不明显,SO2脱除率可达到94%左右。在N2/O2/CO2/H2O/NO/SO2体系中加入0.27%的CH3COONH4后,NO初始浓度不变的条件下,SO2含量较少时,对NO的脱除影响不明显,随着SO2浓度的增加,NO的脱除率不断下降,增加CH3COONH4的添加量可消除SO2的影响;另一方面,在SO2初始浓度恒定的条件下,随着NO含量的增加,SO2的脱除率保持在94%左右。在N2/O2/CO2/H2O/NO/SO2体系中加入0.51%的CH3COONH4后,输入电流2.5A时,NO的脱除率达到72%。
The removal of NO and SO2 in simulated flue gas was studied by self-designed dielectric barrier-corona discharge plasma reactor.The effects of gas composition such as O2 concentration,CO2 concentration and water vapor on the removal of NO and SO2 were investigated.The effect of additive CH3COONH4 on NO and SO2 removal and its mechanism of action were also discussed.Experimental results showed that the increase of O2 concentration,CO2 concentration and H2O vapor concentration would inhibit the removal of NO.After the introduction of CH3COONH4,these inhibitory effects would be weakened and the removal rate of NO would be greatly increased,but its inhibitory effects would not be completely eliminated.After the introduction of CH3COONH4 into N2/O2/SO2 system,the influence of gas composition and input current on SO2 removal was not obvious,and the removal rate of SO2 could reach about 94%.When 0.27%CH3COONH4 was added into N2/O2/CO2/H2O/NO/SO2 system,under the initial concentration of NO was constant,When the content of SO2 was low,the effect on NO removal was not obvious,the removal rate of NO decreased with the increase of SO2 concentration,the effect of SO2 could be eliminated by increasing the addition of CH3COONH4.On the other hand,under the condition of constant initial concentration of SO2,with the increase of NO content,the removal rate of SO2 remained around 94%.When 0.51%CH3COONH4 was added into N2/O2/CO2/H2O/NO/SO2 system,the removal rate of NO reached 72%when the input current was 2.5A.
作者
阚青
杨岚
刘露
马晓迅
KAN Qing;YANG Lan;LIU Lu;MA Xiaoxun(School of Chemical Engineering,Northwest University,International Scientific and Technological Cooperation Base for Clean Utilization of Hydrocarbon Resources,Chemical Engineering Research Center of the Ministry of Education for Advance Use Technology of Shanbei Energy,Shaanxi Research Center of Engineering Technology for Clean Coal Conversion,Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi,Xi’an710069,Shaanxi,China)
出处
《化工进展》
EI
CAS
CSCD
北大核心
2019年第10期4786-4796,共11页
Chemical Industry and Engineering Progress
基金
国家自然科学基金(21536009)
陕西省科技计划(2017ZDCXL-GY-10-03)
关键词
脱硫脱硝
介质阻挡-电晕放电
CH3COONH4
气体组分
脱除效率
desulfurization and denitrification
dielectric barrier-corona discharge
CH3COONH4
gas component
removal efficiency