摘要
在面向MRO的工业现场设备管理中,监测数据通过无线传感器网络采集和传输,需同时满足网络寿命与数据传输质量的要求。传统的基本蚁群路由算法,不仅容易陷入局部最优和收敛速度慢,而且只有节点能耗或者传输距离的单一目标。提出基于量子蚁群优化的多目标路由算法:用量子比特表示信息素,并引入能耗、实时性和负载均衡多目标作为适应性函数,用量子比特旋转门反馈控制全局信息素更新。通过仿真分析和应用于一个实际现场的无线传感器网络,验证了这种算法能加快算法收敛速度和增加蚂蚁种群的多样性,从而跳出局部收敛,同时这种算法能兼顾网络寿命和数据传输质量。
In the industrial field equipment management for maintenance,repair and operation(MRO),monitoring data is collected and transmitted through Wireless Sensor Network(WSN),which need to meet the requirements of both network lifetime and data transmission quality at the same time.The traditional Basic Ant-Based Routing(BABR)algorithm is not only easy to fall into local optimal and slow convergence speed,but also has a single target of node energy consumption or transmission distance.A Quantum-inspired Ant-Based Multi-Objective Routing(QABMOR)algorithm is proposed,in which qubit is used to represent pheromone,and a multi-objective of energy consumption,real-time performance and load balancing is introduced as feedback fitness function together with quantum rotation gate to control pheromone updating.By simulation analysis and an application in a real wireless sensor network,it is verified that this algorithm can accelerate the convergence speed and increase the diversity of ant population,thus help ants jump out of local convergence,and this algorithm can take into account both network life and data transmission quality simultaneously.
作者
李飞
刘敏
蒋昊
LI Fei;LIU Min;JIANG Hao(Department of Computer,Zhejiang University City College,Hangzhou 310015,China;College of Electronics and Information Engineering,Tongji University,Shanghai 201804,China)
出处
《传感技术学报》
CAS
CSCD
北大核心
2019年第9期1366-1373,共8页
Chinese Journal of Sensors and Actuators
基金
国家自然科学基金项目(61573257)
浙江省教育厅项目(Y201432791)
关键词
无线传感器网络
多目标路由
量子蚁群算法
量子比特
适应性函数
Wireless Sensor Network(WSN)
multi-objective routing
Quantum Ant Colony Algorithm(QACA)
quantum bit(qubit)
fitness function