期刊文献+

基于H-B破坏准则的浅埋硐室顶部围岩塌落面分析

Analysis on Surrounding Rock Collapse on the Top of Shallow Buried Chamber Based on Hoek-Brown Failure Criterion
下载PDF
导出
摘要 基于Hoek-Brown非线性强度破坏准则,构建了二维任意几何对称截面浅埋硐室顶部围岩破坏机制;根据极限分析上限定理,通过计算内能耗散功率和外力功率构建了目标函数;利用变分法对目标函数进行极值求解,推导出极限状态下任意几何对称截面硐室塌落形状的函数表达式;运用Matlab软件求解并分析出各参数对塌落范围以及形状的影响,同时利用CAD绘制相应的二维塌落形状图。 Based on the Hoek-Brown nonlinear strength failure criterion,the failure mechanism of the surrounding rock on the top of the shallow buried chamber with two-dimensional arbitrary geometrical symmetry section was constructed.According to the upper bound theorem of limit analysis,the objective function is established by calculating the internal energy dissipation power and the external force power.The calculus of variations was used to solve the extremum of the objective function and the function expression for the collapse shape of the chamber with arbitrary geometrical symmetry section was derived in the limit state.By means of Matlab,the influence of each parameter on the collapse range and shape is solved and analyzed,furthermore,the corresponding two-dimensional collapse shape graph is drawn with CAD.
作者 彭安平 赵腾 黄姗 左学贤 刘双墉 PENG Anping;ZHAO Teng;HUANG Shan;ZUO Xuexian;LIU Shuangyong(School of Civil Engineering,Central South University,Changsha 410075,China;Hunan Road Bridge Construction Group Co.,Ltd.,Changsha 410004,China)
出处 《路基工程》 2019年第5期194-199,共6页 Subgrade Engineering
基金 国家自然科学基金资助项目(51478477 51878668)
关键词 任意对称截面 浅埋硐室 变分法 上限理论 HOEK-BROWN准则 arbitrary geometrical symmetry section shallow buried chamber calculus of variations upper bound theorem Hoek-Brown failure criterion
  • 相关文献

参考文献4

二级参考文献49

  • 1周翠英,邓毅梅,谭祥韶,刘祚秋,尚伟,詹胜.饱水软岩力学性质软化的试验研究与应用[J].岩石力学与工程学报,2005,24(1):33-38. 被引量:244
  • 2谢骏,刘纯贵,于海勇.双平行圆形隧道稳定的塑性极限分析上限解[J].岩石力学与工程学报,2006,25(9):1835-1841. 被引量:23
  • 3CHEN W F. Limit analysis and soil mechanics[M]. New York: Elsevier Scientific Publishing Company, 1975.
  • 4DONALD I, CHEN Z Y. Slope stability analysis by the upper bound approach., fundamentals and methods[J]. Canadian Geotechnical Journal 1997, 34(6): 853-862.
  • 5DAVIS E H, GUNN M J, MAIR R J, et al. The stability of shallow buried tunnel s and underground openings in cohesive material[J] Geotechnique, 1980, 30(4): 397-416.
  • 6OSMAN A S, MAIR R J, BOLTON M D. On the kinematics of 2D tunnel collapse in undrained clay[J]. Geotechnique, 2006, 56(9) 585 - 595.
  • 7KLAR A, OAMAN A S, BOLTON M. 2D and 3D upper bound solutions for tunnel excavation using "elastic" flow fields[J] International Journal for Numerical and Analytical Methods in Geomechanies, 2007, 31(12): 1 367 - 1 374.
  • 8VERRUIJT A, BOOKER J R. Surface settlements due to deformation of a tunnel in an elastic half plane[J]. Gdotechnique, 1996, 46(4) 753 - 756.
  • 9SLOAN S W. Upper bound limit analysis using linen finite elements and linear programming[J]. International Journal for Nummerical and Analytical Methods in Geomechanics, 1989, 13:263 - 282.
  • 10SLOAN S W, KLEEMAN P W. Upper bound limit analysis using discontinuous velocity fields[J]. Computer Methods in Applied Mechanics and Engineering, 1995, 127(1 - 4): 293 - 314.

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部