期刊文献+

复杂加载状态下的剪切本构关系 被引量:2

Shear constitutive relation under complex loading
下载PDF
导出
摘要 脆性材料的内部通常含有大量随机分布的微细观缺陷,在受到外部载荷作用时,材料会表现出相当复杂的力学响应。当内部微裂纹受到压剪载荷作用时,裂纹面之间可能会发生相对滑动,它与材料的损伤过程相互影响,表现为非线性应力应变关系等行为。可以从研究一个简单的含一条裂纹的单元体开始,令其承受双轴压力和剪力,利用弹性力学理论中的复变函数解法,考虑到裂纹面间的摩擦力,计算出单元体边界及裂纹所在平面上各点的位移,通过某种平均化方法,可以得到单元体的基体剪应变和总体剪应变,再根据弹性剪切本构关系,进一步得到单元体在该加载条件下的弹性剪切损伤本构方程,同时得到剪切损伤变量的细观描述形式。计算结果表明,2个方向上的压力大小均对材料的剪切损伤和剪切模量产生一定程度的影响。 The interior of brittle materials usually contains a large number of micro-defects with random distribution.When subjected to external loads,the material will show quite complex mechanical response.When the internal micro-cracks are subjected to compression-shear loads,relative sliding may occur between the crack surfaces,which interact with the damage process of the material,showing the behavior of non-linear stress-strain relationship etc.First,a simple element with a crack under biaxial compression and shearing can be studied.The function of the complex variable in elasticity theory is used to calculate the the displacement of the points on the boundary of the element and the plane where the crack is located.By some averaging method,the matrix shear strain and the total shear strain of the element can be obtained.According to the elastic shear constitutive relation,the elastic shear damage constitutive equation of the element under the loading condition is further obtained,and the mesoscopic description of the shear damage variable is also obtained.The results show that the shear damage and shear modulus of the material are affected by the compression in both directions.
作者 崔崧 吕嫣 李惠玲 CUI Song;LYU Yan;LI Huiling(College of Physical Science and Technology,Shenyang Normal University,Shenyang 110034,China;Ray Instrumentation Engineering Technology Research Center of Liaoning Province,Shenyang Normal University,Shenyang 110034,China;School of Physics,University of Electronics Science and Technology of China,Chengdu 611731,China)
出处 《沈阳师范大学学报(自然科学版)》 CAS 2019年第4期296-299,共4页 Journal of Shenyang Normal University:Natural Science Edition
基金 国家自然科学基金青年科学基金资助项目(11703018) 辽宁省教育厅科学研究项目(L2014442)
关键词 压剪载荷 损伤 弹性力学 裂纹面 剪切模量 compression-shear loads damage elasticity crack surface shear modulus
  • 相关文献

参考文献3

二级参考文献28

  • 1崔崧,黄宝宗,张凤鹏.准脆性材料的弹塑性损伤耦合模型[J].岩石力学与工程学报,2004,23(19):3221-3225. 被引量:11
  • 2沈真.损伤力学及其在复合材料中的应用[J].力学进展,1985,15(2):147-161.
  • 3KRAJCINOVIC D,FONSEKA G U. The continuous damage theory of brittle materials[J]. J Appl Mech, 1981,48 (4) :809 - 824.
  • 4TALREJA R. Damage development in composites: Mechanics and model[J]. J Strain Analy Eng Design, 1989,24 (4) :215 - 222.
  • 5SWOBODA G, YANG Q. An energy-based damage model of geomaterials (part 1 and part 2)[J]. Int J Solids Struet, 1999,36(12) : 1719 - 1755.
  • 6DRAGON A, HALM D, DESOYER T. Anisotropic damage in quasi-brittle solids: modeling, computational issues and applications[J]. Comput Methods Appl Mech Eng, 2000,183(3/4) :331 - 352.
  • 7BUDIANSKY B, O'CONNELL R J. Elastic moduli of a cracked solids[J].Int J Solids Structures, 1976,12(1):81 - 95.
  • 8KACHANOY M. Effective elastic properties of crack solids: Critical review of some basic concepts[J]. Appl Mech Review, 1992,45(7) :304 - 335.
  • 9BENVENSITE Y. On the Mori-Tanaka's method in cracked solids[J]. Mech Res Comm, 1986,13(4) :193 - 201.
  • 10HUANG Y, HU K, CHANDRA A. A generalized self-consistent mechanics method for microcracked solids[J]. J Mech Phys Solids, 1994,42(8) : 1273 - 1291.

共引文献6

同被引文献4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部