期刊文献+

不同Legendre函数递推公式对计算球谐函数定积分的影响

Effects on the Definite Integrals of Spherical Harmonic Functions Using Different Recursive Formulas for Computing Legendre Functions
下载PDF
导出
摘要 针对球谐函数定积分计算中Legendre函数递推问题展开研究,分析了标准向前列推法、Belikov法、跨阶次法、X数法以及顾及麦克劳林级数展开式对球谐函数定积分计算的影响。利用Eigen6c-4地球重力场模型计算扰动引力梯度径向分量,分析不同方法之间的差异。实验表明,不考虑麦克劳林级数展开式时4种方法的相对精度在高纬度地区较差,但计算模型扰动引力径向分量的精度一致,结合麦克劳林级数式可提高高纬度地区定积分计算的相对精度,但会降低中低纬度地区定积分计算的精度,并且对高纬度地区扰动引力径向分量的影响极小,但会严重降低低纬度地区扰动引力梯度计算的精度。 Aimed at different recursive formulas for computing Legendre functions in the computation of definite integrals of spherical harmonic functions,this paper analyzes the effects of standard forward column method,Belikov method,Swarztrauber method and X-Number method on computing Legendre functions.The radial components of mean disturbing gravity gradient are computed using Eigen6c-4 earth gravity field model in the application of standard forward column method,Belikov method,Swarztrauber method and X-Number method.From the tests,it can be claimed that these four methods have poor accuracies in the high-latitude areas but have the same accuracies in the computation of radial component of mean disturbing gravity gradient.If the Maclaurin formula is applied,the precision of definite integrals of spherical harmonic functions can be improved significantly in the high-latitude areas but can deteriorate the accuracies in mid-and low-latitude areas,and Maclaurin formula has little effect on the radial components of mean disturbing gravity gradient in high-latitude areas but can seriously reduce the accuracies of mean disturbing gravity gradient in low-latitude areas.
作者 邢志斌 李姗姗 田苗 范雕 张驰 马越原 XING Zhi-bin;LI Shan-shan;TIAN Miao;FAN Diao;ZHANG Chi;MA Yue-yuan(Information Engineering University,Zhengzhou 450001,Henan Province,China;National University of Defense Technology,Changsha 410073,Hunan Province,China)
出处 《海洋技术学报》 2019年第5期37-42,共6页 Journal of Ocean Technology
基金 国家自然科学基金资助项目(41274029,41774018,41504018,41404020) 校内自立课题(2017503902,2018222)
关键词 标准向前列推法 Belikov法 跨阶次法 X-数法 球谐函数定积分 平均扰动引力梯度径向分量 standard forward column method Belikov method Swarztrauber method X-Number method definite integrals of spherical harmonic functions radial component of mean disturbing gravity gradient
  • 相关文献

参考文献4

二级参考文献28

  • 1张传定,吴晓平.非心摄动引力的快速计算方法研究[J].武汉大学学报(信息科学版),2003,28(S1):87-90. 被引量:8
  • 2夏哲仁,石磐,李迎春.高分辨率区域重力场模型DQM2000[J].武汉大学学报(信息科学版),2003,28(S1):124-128. 被引量:23
  • 3田晋,暴景阳,刘雁春.全球位系数模型构建高精度局部重力场的Clenshaw求和[J].武汉大学学报(信息科学版),2005,30(10):905-908. 被引量:3
  • 4吴星,刘雁雨.多种超高阶次缔合勒让德函数计算方法的比较[J].测绘科学技术学报,2006,23(3):188-191. 被引量:43
  • 5[1]REMMEL R,COLOMBO O L.Gravity Field Determination from Satellite Gradiometry[J].Bulletin Geodesique,1985,57:233-246.
  • 6[2]ARABELOS D,TSCHERNING C C.Simulation of Regional Gravity Field Recovery form Satellite Gravity Gradiometer Data Using Collocation and FFT[J].Bulletin Geodesique,1990,64:363-382.
  • 7[3]VERMEER M.FGI Studies on Satellite Gravity Gradiometry(2):Geopotential recovery at 0.5-degree resolution from global satellite gradiometry data sets[R].Report 90:1,Helsinki,Finnish Geodetic Institue,1990.
  • 8[4]THONG N C.Simulation of Gradiometry Using the Spheroidal Harmonic Model of the Gravitational Field[J].Manuscripta Geodaetica,1989,14:404-417.
  • 9[6]张传定.卫星重力测量基础、模型化方法与数据处理算法[D].郑州:信息工程大学测绘学院,2000.
  • 10[7]BELIKOV M V,TAYBATOROV K A.An efficient algorithm for computing the Eearth's gravitational potential and its derivatives at satellite altitudes[J].Manuscripta Geodaetica,1992,17:104-116.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部