期刊文献+

基于卷积神经网络的JPEG图像隐写分析参照图像生成方法 被引量:5

Reference Image Generation Algorithm for JPEG Image Steganalysis Based on Convolutional Neural Network
下载PDF
导出
摘要 基于深度学习的JPEG数字图像隐写分析模型检测能力已超越基于人工设计特征隐写分析模型,但检测能力仍存在提升空间.以进一步提升JPEG隐写分析模型的检测能力为目标,借助深度学习方法,为基于深度学习的JPEG隐写分析模型提供辅助信息,从数据输入角度,探索进一步提升隐写分析模型检测能力的途径.基于卷积神经网络,构建隐写分析参照图像生成模型,对待检测图像进行变换,从而获得对应参照图像.之后,将待检测图像与对应参照图像作为隐写分析模型的输入数据,进一步挖掘待检测图像中存在的隐写分析相关信息.为验证所提出算法的有效性,进行针对JPEG自适应隐写算法的对比实验.实验结果表明:所设计的参照图像生成模型能够提升现有基于深度学习的隐写分析模型检测能力,提升效果最多可达6个百分点. As the opponent of image steganography,the image steganalysis is to detect the secret message in images concealed by steganography algorithms.Recently,state-of-the-art JPEG image steganalysis schemes are changing from complex handcrafted feature-based ones to deep learning-based ones.Although the deep learning steganalysis for detecting JPEG steganography achieves great advancement,there still exists room for improvement.As it is verified that side information could promote the steganography detection accuracy,we seek the method to further improve the accuracy of content-adaptive steganography detection in JPEG domain from the perspective of side information offering for the deep learning steganalysis scheme.The proposed method utilizes convolutional neural networks to generate reference images from the input data.And the reference image is treated as the side information for the deep learning-based JPEG image steganalysis model.The proposed method can be pre-trained or trained together with the steganalysis model.Experimental results on classic content-adaptive steganography algorithms in JPEG domain named J-UNIWARD and JC-UED verifies the proposed method could enhance the detection ability compared with the deep learning steganalysis model without the aid of the proposed method to a certain extent.The proposed method could boost the detection accuracy for deep learning-based JPEG steganalysis model by 6 percentage points at most.
作者 任魏翔 翟黎明 王丽娜 嘉炬 Ren Weixiang;Zhai Liming;Wang Lina;Jia Ju(Key Laboratory of Aerospace Information Security and Trusted Computing(Wuhan University),Ministry of Education,Wuhan 430072)
出处 《计算机研究与发展》 EI CSCD 北大核心 2019年第10期2250-2261,共12页 Journal of Computer Research and Development
基金 国家自然科学基金重点项目(U1536204) 国家自然科学基金项目(61876134,61872275) NSFC-通用技术基础研究联合基金项目(U1836112)~~
关键词 JPEG隐写分析 辅助信息 参照图像 卷积神经网络 JPEG自适应隐写算法 JPEG steganalysis side information reference image convolution neural network(CNN) JPEG adaptive steganography
  • 相关文献

参考文献4

二级参考文献44

  • 1刘文芬,管伟,曹佳,张卫明.基于污染数据分析实现LSB秘密消息的检测[J].计算机研究与发展,2006,43(6):1058-1064. 被引量:4
  • 2王鹏,于锦海.图像处理中卷积理论的数学基础[J].微计算机信息,2006(08S):209-210. 被引量:8
  • 3张新鹏,王朔中.基于稀疏表示的密写编码[J].电子学报,2007,35(10):1892-1896. 被引量:9
  • 4Crandall R. Some notes on steganography [EB/OL]. [2013-10-22]. http://www, dia. unisa, it/- ads/eorso-security/ www/CORSO-0203]steganografia/LINKS% 2010CALI/matri- encoding, pdf.
  • 5Westfeld A. F5-A steganographic algorithm: High capacity despite better steganalysis [G]//LNCS 2137: Proe of the 4th Int Workshop on Information Hiding. Berlin: Springer, 2001:289-302.
  • 6Zhang Weiming, Zhang Xinpeng, Wang Shuozhong. Maximizing steganographic embedding efficiency by combining hamming codes and wet paper codes [G] //LNCS 5284: Proc of the 8th Int Workshop on Information Hiding. Berlin: Springer, 2008:60-71.
  • 7Filler T, Judas J, Fridrieh J. Minimizing additive distortion in steganography using syndrome-trellis codes [J]. IEEE Trans on Information Forensics and Security, 2011, 6 (4): 920-935.
  • 8Zhang Rongyue, Sachnev V, Botnan M B, et al. An efficient embedder for BCH coding for steganography [J]. IEEE Trans on Information Theory, 2012, 58(12): 7272-7279.
  • 9Wang Chao, Zhang Weiming, Liu Jiufen, et al. Fast matrix embedding by matrix extending [J]. IEEE Trans on Information Forensics and Security, 2012, 7(1) : 346-350.
  • 10Fridrich J, Goljan M, Soukal D. Perturbed quantization steganography with wet paper codes [C] //Proc of the 6th ACM Workshop on Multimedia and Security. New York: ACM, 2004:4-15.

共引文献11

同被引文献28

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部