期刊文献+

基于深度学习的语义分割算法综述 被引量:7

A Review of Semantic Segmentation Algorithm Based on Deep Learning
下载PDF
导出
摘要 图像的语义分割是对图像中的每个像素标注其所属的类别。在航天领域,语义分割技术可用于定位航天器及其零部件,为航天器故障排除、部件维修、太空垃圾清理等在轨服务创造条件。近几年,全部或部分使用深度学习时,语义分割的效果获得了很大的提升。本文对基于深度学习的语义分割算法进行综述。首先介绍常用的数据集和通用的深度神经网络,随后对两类具有重大实用意义的分割算法:编码器-解码器算法和整合上下文信息算法进行总结。最后对语义分割的发展进行了展望。 Semantic segmentation is the classification of each pixel in the image.In aerospace field,semantic segmentation can be used to locate spacecraft and its components,and to create conditions for spacecraft troubleshooting,component maintenance,space junk cleaning and other on-orbit services.In recent years,the effect of semantic segmentation has been greatly improved with full or partial use of deep learning.In this paper,the semantic segmentation algorithm based on deep learning is reviewed.Firstly,the commonly used datasets and deep neural networks are introduced,then two kinds of segmentation algorithms with great practical significance are summarized:encoder-decoder method and integrating context knowledge method.Finally,the development of semantic segmentation is prospected.
作者 赵霞 白雨 倪颖婷 陈萌 郭松 杨明川 陈凤 ZHAO Xia;BAI Yu;NI Yingting;CHEN Meng;GUO Song;YANG Mingchuan;CHEN Feng(Department of Electronics and Information Engineering,Tongji University,Shanghai 201804,China;Research Institute of Shanghai Aerospace System Engineering,Shanghai 200092,China;Shanghai Academy of Spaceflight Technology,Shanghai 201109,China)
出处 《上海航天》 CSCD 2019年第5期71-82,共12页 Aerospace Shanghai
基金 上海航天科技创新基金(SAST2016018)
关键词 深度学习 语义分割 全卷积网路 编码器-解码器算法 整合上下文信息算法 deep learning semantic segmentation fully convolutional network encoder-decoder method integrating context knowledge method
  • 相关文献

参考文献4

二级参考文献114

  • 1LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
  • 2HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets [J]. Neural Computation, 2006, 18(7): 1527-1554.
  • 3LEE H, GROSSE R, RANGANATH R, et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations [C]// ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning. New York: ACM, 2009: 609-616.
  • 4HUANG G B, LEE H, ERIK G. Learning hierarchical representations for face verification with convolutional deep belief networks [C]// CVPR '12: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2012: 2518-2525.
  • 5KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [C]// Proceedings of Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2012: 1106-1114.
  • 6GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2014: 580-587.
  • 7LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2015: 3431-3440.
  • 8SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. [2015-11-04]. http://www.robots.ox.ac.uk:5000/~vgg/publications/2015/Simonyan15/simonyan15.pdf.
  • 9SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2015: 1-8.
  • 10HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [EB/OL]. [2016-01-04]. https://www.researchgate.net/publication/286512696_Deep_Residual_Learning_for_Image_Recognition.

共引文献932

同被引文献59

引证文献7

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部