期刊文献+

不同应力比下渗碳齿轮钢多重竞争疲劳失效模型构建 被引量:2

Construction of a Multiple Competing Fatigue Failure Model for Carburized Gear Steel with Different Stress Ratios
下载PDF
导出
摘要 在应力比为-1,0和0.3的情况下,对渗碳齿轮钢进行了轴向加载试验,研究其超高周疲劳性能.试样的疲劳失效形式为:表面失效、内部无细晶粒区(Fine granular area,FGA)失效和内部有FGA失效.为描述齿轮钢在变应力比及表面强化处理下的竞争失效机理,建立了包含三种失效模式的多重竞争疲劳失效模型.结果表明,三种疲劳失效模式的失效概率与试验数据吻合较好,为阐明齿轮钢超高周疲劳状态下疲劳裂纹萌生竞争机制提出新的评估方法. In the cases of stress ratios R of-1,0 and 0.3 respectively,the ultra-high cycle fatigue behaviors of carburized gear steel were studied by axial loading test.Based on the fracture morphology,the fatigue failure modes of the specimens can be divided into surface failure,internal failure without FGA(fine granular area)and internal failure with FGA.In order to describe the competitive failure mechanism of gear steel under variable stress ratios and surface hardening treatments,a multiple competitive fatigue failure model including three failure modes was established in this paper.The results show that the failure probabilities of the three fatigue failure modes are in good agreement with the experimental data,which indicates that the proposed method is valid for explaining the competition mechanism of fatigue crack initiation of gear steel under ultra-high cycle fatigue regimes.
作者 刘行 刘其晨 于欢 郭玉鹏 邓海龙 LIU Hang;LIU Qi-chen;YU Huan;GUO Yu-peng;DENG Hai-long(College of Mechanical Engineering,Inner Mongolia University of Technology,Hohhot 010051,China;Ordos Special Equipment Inspection&Testing Institute,Ordos 017000,China)
出处 《内蒙古工业大学学报(自然科学版)》 2019年第4期282-289,共8页 Journal of Inner Mongolia University of Technology:Natural Science Edition
基金 内蒙古工业大学科学研究项目(ZZ201801) 内蒙古自治区自然科学基金(2018BS05005) 内蒙古自治区其他厅局项目(2018NMKJ11)
关键词 超高周疲劳 应力比 渗碳 破坏机理 竞争失效 ultra-high cycle fatigue stress ratio carburizing process failure mechanism competition failure
  • 相关文献

参考文献1

二级参考文献35

  • 1Gillemot L F. Brittle fracture of welded materials. In: Common- wealth Welding Conference C.7, 1965. 353-358.
  • 2Gillemot L F. Criterion of crack initiation and spreading. Eng Fract Mech, 1976, 8(1): 239-253.
  • 3Gillemot L F, Czoboly E, Havas I. Fracture mechanics applications of absorbed specific fracture energy: notch and unnotched specimens. Theor Appl Fract Mech, 1985, 4(1): 39-45.
  • 4Sih G C. Strain-energy-density factor applied to mixed mode crack problems. Int J Fract, 1974, 10(3): 305--321.
  • 5Sih G C. Mechanics of Fracture Initiation and Propagation: Surface and volume energy density applied as failure criterion. Dordrecht: Kluwer Academic Publisher, 1991.
  • 6Sih G C, Ho J W. Sharp notch fracture strength characterized by crit- ical energy density. Theor Appl Fract Mech, 1991, 16(3): 179-214.
  • 7Tang X S, Sih G C. Weak and strong singularities reflecting mul- tiscale damage: Micro-boundary conditions for free-free, fixed-fixedand free-fixed constraints. Theor Appl Fract Mech, 2005, 43(1): 5-62.
  • 8Sih G C, Tang X S. Scaling of volume energy density function re- flecting damage by singularities at macro-, meso- and microscopic level. Theor Appl Fract Mech, 2005, 43(2): 211-231.
  • 9Molski K, Glinka G. A method of elastic-plastic stress and strain calculation at a notch root. Mat Science Eng, 1981, 50(1): 93-100.
  • 10Glinka G. Energy density approach to calculation of inelastic strain-stress near notches and cracks. Eng Fract Mech, 1985, 22(5): 485-508.

共引文献1

同被引文献15

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部