期刊文献+

自适应最优邻域尺寸选择的点云法向量估计方法 被引量:20

A new method of normal estimation for point cloud based on adaptive optimal neighborhoods
原文传递
导出
摘要 为了削弱邻域尺寸选择对基于主成分分析(PCA)的点云法向量估计精度的影响,自适应处理尖锐特征点云,该文提出了自适应邻域的PCA点云法向量估计方法,利用点云局部邻域协方差矩阵,构建了局部邻域维度特征信息熵函数,根据熵函数最小准则,实现了点云自适应最优邻域的估计,在此基础上进行PCA法向量估计。分别对模拟点云和实测点云进行了法向量估计实验。实验结果表明,该文方法能够显著提高包含尖锐特征的点云法向量估计精度。 In order to eliminate the effect of a fixed neighborhood size on the results of normal estimation based on principal component analysis(PCA),and deal with sharp features in point cloud,a new method using an adaptive optimal neighborhood was proposed.For one point in point clouds,a covariance matrix was first constructed by involving its neighbors,the establishment of the entropy function based on the dimensionality features came next,the optimal neighborhood could be determined adaptively by minimizing the value of the entropy function,and the normal vector was finally estimated using the PCA method and the optimal neighborhood obtained just now.Two set of experiments had been conducted using simulated point clouds and scanned ones,respectively,and the results demonstrate that the proposed approach could improve the precision of normal estimation for the point cloud including sharp features.
作者 宣伟 花向红 邹进贵 贺小星 赵不钒 XUAN Wei;HUA Xianghong;ZOU Jingui;HE Xiaoxing;ZHAO Bufan(School of Civil Engineering and Architecture,Wuhan University of Technology,Wuhan 430070,China;Key Laboratory for Digital and Resources of Jiangxi Province,East China University of Technology,Nanchang 330013,China;School of Geodesy and Geomatics,Wuhan University,Wuhan 430079,China;School of Civil Engineering and Architecture,East China Jiaotong University,Nanchang 330013,China)
出处 《测绘科学》 CSCD 北大核心 2019年第10期101-108,116,共9页 Science of Surveying and Mapping
基金 东华理工大学江西省数字国土重点实验室开放研究基金资助项目(DLLJ201801) 中央高校基本科研业务费专项资金资助项目(2018IVA075) 国家自然科学基金项目(41674005) 中国博士后科学基金项目(2018M632909)
关键词 激光点云 PCA法向量估计 熵函数最小准则 最优邻域估计 laser point cloud normal estimation using PCA criterion of minimum entropy optimal neighborhood estimation
  • 相关文献

参考文献4

二级参考文献14

共引文献113

同被引文献150

引证文献20

二级引证文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部