期刊文献+

基于PD-CNN的Polar码译码算法 被引量:2

A Decoding Algorithm for Polar Codes Based on PD-CNN
下载PDF
导出
摘要 针对传统Polar码译码算法在相关噪声信道下性能严重下降的问题,提出了一种基于前置预判-卷积神经网络(Prior Decision-Convolutional Neural Networks,PD-CNN)的译码算法。通过前置预判深度优化CNN,使其准确地估计信道噪声并使残余噪声尽可能遵循高斯分布,再根据残余噪声分布统计更新出可靠的似然比信息。分析了不同译码算法对不同码率Polar码在不同噪声相关强度下的译码性能,并与本文所提出的译码算法进行对比。仿真结果表明:在相关噪声信道下,当误码率为10^-5时,本文所提出的译码算法与标准置信度传播算法相比可获得约2.5 dB的增益。此外,在高信噪比时,与置信度传播-卷积神经网络算法相比,本文提出的译码算法具有相同的性能,但复杂度更低,译码延迟最大可减少42%。 Since the traditional decoding algorithms of Polar code are seriously degraded under the correlated noise channel,a decoding algorithm based on the Prior Decision-Convolutional Neural Networks(PD-CNN)is proposed.The CNN is optimized depth by the pre-predicted in order to accurately estimate the channel noise and make the residual noise follow the Gaussian distribution as much as possible,and make the reliable likelihood ratio information be updated according to the residual noise distribution statistics.The decoding performances of different decoding algorithms for different code rate of Polar codes under different noise correlation intensities are analyzed and compared with the decoding algorithm proposed in this paper.The simulation results show that the proposed decoding algorithm can obtain a gain of about 2.5 dB compared with the standard Belief Propagation algorithm at the bit error rate(BER)of 10^-5 in the correlated noise channel.In addition,the proposed decoding algorithm has the same performance compared with the Belief Propagation-Convolution Neural Network algorithm at high signal-to-noise ratio(SNR),but the complexity is lower,and the decoding delay can be reduced by 42%.
作者 徐鹏 孔令军 赵生妹 郑宝玉 Xu Peng;Kong Lingjun;Zhao Shengmei;Zheng Baoyu(Institute of Signal Processing&Transmission,Nanjing University of Posts and Telecommunications,Nanjing,Jiangsu 210003,China;Key Lab of Broadband Wireless Communication and ensor Network Technology,Ministry of Education,Nanjing University of osts and Telecommunications,Nanjing,Jiangsu 210003,China)
出处 《信号处理》 CSCD 北大核心 2019年第10期1652-1660,共9页 Journal of Signal Processing
基金 国家自然科学基金(61501250,61871234) 江苏省研究生科研与实践创新计划项目(KYCX18_0917)
关键词 Polar码 卷积神经网络 相关性噪声 置信度传播 Polar code convolutional neural network correlation noise belief propagation
  • 相关文献

参考文献3

二级参考文献40

  • 1Babich F, Montorsi G, Vatta F. Improved union bounds on turbo codes performance in the Rician fading channel [ C ] // Vehicular Technology Conference, 1999. VTC 1999-Fa11. IEEE VTS50th. IEEE, 1999(4) : 2178-2182.
  • 2Athanasios Doukas, Grigorios Kalivas. Rician K Factor Es- timation for Wireless Communication Systems [ C ]//Wire- less and Mobile Communications, 2006. ICWMC'06. In- ternational Conference on. IEEE, 2006: 69-69.
  • 3Yu X M, Kang Y M, Yuan D F. Performance Analysis of Turbo Codes in Wireless Rician Fading Channel with Low Rician Factor [ C ]////Communication Technology (ICCT), 2010 IEEE International Conference on. IEEE, 2010: 48-51.
  • 4Arikan E. Channel polarization: A method for construc- ting capacity-achieving codes for symmetric binary-input memoryless channels [ J ]. IEEE Transactions on Infor- mation Theory, 2009, 55 (7) : 3051-3073.
  • 5Li H J, Yuan J H. A practical construction method for Po- lar Codes in AWGN channels [ C ] ///TENCON Spring Conference, 2013 IEEE. IEEE, 2013: 223-226.
  • 6Wu D L, Li Y, Sun Y. Construction and Block Rate Analysis of Polar Codes Over AWGN Channel Based on Gaussian Approximation [ J ]. IEEE Communication Let- ters ,2014 : 1099-1102.
  • 7Bravo-Santos A. Polar codes for Rayleigh Fading channels [ J]. IEEE Communicaton Letters. 2013 : 2352-2355.
  • 8Si H, Koyluoglu O O, Vishwanath S. Polar Coding for Fading channels [ C ] // Information Theory Workshop (ITW), 2013 IEEE. IEEE, 2013: I-5.
  • 9Zhao S M, Shi P, Wang B. Designs of Bhattacharyya pa- rameter in the construction of polar codes [ C ] // Interna- tional Conference on Wireless Communications Networ- king & Mobile Computing, 2011:1-4.
  • 10Tal I, Vardy A. How to construct polar codes[J]. IEEE Transactions on Information Theory, 2011, 59 ( 10 ) : 6562-6582.

共引文献7

同被引文献3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部