期刊文献+

利用卷积神经网络和协方差的协作频谱感知算法 被引量:11

Cooperative Spectrum Sensing Algorithm Using Convolutional Neural Networks and Covariance
下载PDF
导出
摘要 针对基于信号协方差矩阵的频谱感知算法门限难于准确得到及没有充分利用原始信号信息等问题,提出了基于卷积神经网络和协方差矩阵的协作频谱感知算法。首先将接收的I、Q两路正交信号的归一化协方差矩阵组成双通道输入矩阵,然后使用卷积神经网络直接提取协方差矩阵的特征信息,并进行训练得到分类器,最后使用训练好的模型进行频谱感知。仿真结果表明,本文所提出的频谱感知算法优于对比算法,在信噪比为-13 dB、40个次用户协作感知时,本文算法虚警概率低于0.1,检测概率达到0.9以上。 A cooperative spectrum sensing algorithm based on convolutional neural network and covariance matrix is proposed to solve the problems that the threshold value of spectrum sensing algorithm based on signal covariance matrix is difficult to get accurately and the raw signal information is not fully utilized.Firstly,the normalized covariance matrix of the received I and Q orthogonal signals is formed into a two-channel input matrix.Then,the characteristic information of the covariance matrix is extracted by using convolutional neural network to train the classifier.Finally,the trained model is used for spectrum sensing.The simulation results show that the proposed spectrum sensing algorithm is superior to the contrast algorithms.The false alarm probability of this algorithm is less than 0.1 and the detection probability is above 0.9,when the SNR is -13 dB and 40 secondary users cooperate in sensing.
作者 鲁华超 赵知劲 尚俊娜 戴绍港 Lu Huachao;Zhao Zhijin;Shang Junna;Dai Shaogang(School of Communication Engineering,Hangzhou Dianzi University,Hangzhou,Zhejiang 310018,China;State Key Lab of Information Control Technology in Communication System,The 36 th Research Institute of China Electronics Technology roup Corporation,Jiaxing,Zhejiang 314001,China)
出处 《信号处理》 CSCD 北大核心 2019年第10期1700-1707,共8页 Journal of Signal Processing
关键词 卷积神经网络 协方差 协作频谱感知 convolutional neural network covariance cooperative spectrum sensing
  • 相关文献

参考文献9

二级参考文献75

  • 1徐家品,杨智.基于随机矩阵特征值比的频谱感知改进算法[J].电波科学学报,2015,30(2):282-288. 被引量:11
  • 2业宁,王迪,窦立君.信息熵与支持向量的关系[J].广西师范大学学报(自然科学版),2006,24(4):127-130. 被引量:10
  • 3施建宇,潘泉,张绍武,邵壮超,姜涛.基于多特征融合的蛋白质折叠子预测[J].北京生物医学工程,2006,25(5):482-485. 被引量:2
  • 4韩力群.人工神经网络理论、设计及应用[M].北京:化学工业出版社,2004.
  • 5Vapnik V N.The nature of statistical learning theory[M].New York: Springer Verlag, 2000 : 138-167.
  • 6Kom F,Muthukrishnan S.Influence sets based on reverse nearest neighbor queries[C]//Chen W D, Jeffrey F N, Philip A B. Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, Dallas, Texas, USA: 2000.New York, NY, USA: ACM Press, 2000 : 201-212.
  • 7Stanoi I,Agrawal D,Abbadi A E.Reverse nearest neighbor queries for dynamic data bases[C]//Chen W D, Jeffrey F N,Philip A B.Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, Dallas, Texas, USA, 2000.New York,NY,USA:ACM Press,2000:44-53.
  • 8Yang C, Lin K I.An index structure for efficient reverse nearest neighbor queries[C]//George K.Proceedings of the IEEE International Conference on Data Engineering, Heidelberg, Germany,2001.Washington:IEEE Computer Society,2001:485-492.
  • 9Richard O D,Peter E H,David G S.Pattem classification[M].李宏东,姚天翔,译.北京:机械工业出版社,2003:151-158.
  • 10Platt J C.Probabilistic outputs for support vector machines and comparison to regularized likelihood methods[C]//Advances in Large Margin Classifiers.Cambridge, MA: MIT Press, 2000: 61-74.

共引文献121

同被引文献53

引证文献11

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部