期刊文献+

低维流形约束下的事件相机去噪算法 被引量:4

A Denoising Algorithm for Event Cameras Based on Low-Dimensional Manifold Constraint
下载PDF
导出
摘要 本文主要提出一个新的基于流形约束的事件相机去噪算法。事件相机是一类新型的视觉传感器,以高时间分辨率(微秒)感知场景亮度变化,同时输出具有像素位置、时间及极性的事件流。事件相机在传输亮度变化的同时受到噪声的干扰,带噪的事件流会对后续的应用造成不利的影响。为了解决该问题,本文假设事件分布在高维空间中的低维流形上,利用事件点间相似信息建立图模型以近似流形结构,结合图的流形平滑约束,实现事件流去噪。该算法首次将基于图的流形约束引入事件去噪问题中并且直接处理连续的事件序列。仿真实验和真实数据结果证明了事件去噪算法的有效性。 This paper proposes a new denoising algorithm for event cameras based on manifold constraints.An event camera is a new type of vision sensor,which can perceive the change of scene brightness with high temporal resolution(microseconds)and output the event stream with pixel position,time and polarity.Event cameras are disturbed by noise while transmitting brightness changes,and noisy event streams will adversely affect subsequent applications.In order to solve this problem,this paper assumes that events are distributed on a low-dimensional manifold in high-dimensional space,uses the similarity information between event points to build a graph to approximate the manifold structure,and combines the manifold smoothing constraint of graph to complete the event stream denoising.For the first time,the proposed algorithm introduces the graph-based manifold constraint into the event denoising problem and directly processes successive event sequences.Experiments on simulated data and real datasets demonstrate the effectiveness of the event denoising algorithm.
作者 江盟 刘舟 余磊 Jiang Meng;Liu Zhou;Yu Lei(Electronic Information School,Wuhan University,Wuhan,Hubei 430072,China)
出处 《信号处理》 CSCD 北大核心 2019年第10期1753-1761,共9页 Journal of Signal Processing
基金 国家自然科学基金项目(61871297,61401315)
关键词 事件去噪 低维流形 图信号处理 事件相机 event denoising low dimensional manifold graph signal processing event cameras
  • 相关文献

参考文献2

二级参考文献24

  • 1徐蓉,姜峰,姚鸿勋.流形学习概述[J].智能系统学报,2006,1(1):44-51. 被引量:67
  • 2Henri Maitre著.孙洪译.合成孔径雷达图像处理[M].北京:电子工业出版社,2005.
  • 3Laurens van der maaten,Eric Postma,Jaap van den Herik.Dimensionality Reduction:A Comparative Review[R].Tilburg University Technical Report,TiCC TR 2009-005,October 26,2009.
  • 4Wilson,R.C.,Hancock E.R.,Pekalska E.,Duin R.P.W.:Spherical Embeddings for non-Euclidean Dissimilarities[C].Comp.Vis.And Patt.Recog.1903-1910(2010).
  • 5Sam T.Roweis,Lawrence K.Saul,Nonlinear Dimensionality Reduction by Locally Linear Embedding[J].SCIENCE VOL 290,No.5500,pp.2323-2326,22 December 2000.
  • 6D.L.Donoho and C.Grimes,Hessian Eigenmaps:local0ly linear embedding techniques for high-dimensional data[J].the Proceedings of the National Academy of Sciences,May 2003,100(10):5591-5596.
  • 7K.P.Bennett,J.A.Blue,A Support Vector Machine Approach to Decision Trees[R].R.P.I.Math Report No.97-199,Rensselaer Polytechnic Institute,Troy,NY,1997.
  • 8S.Fukuda,H.Hirosawa.Support vector machine classification of land cover:application to polarimetric SAR data[A].In Proc.IGARSS' 01[C],Sydney,Australia,2001:187-189.
  • 9Tao M L, Zhou F, Liu Y, et al. Tensorial independent component analysis-based feature extraction for polarime- tric SAR data classification [ J ]. IEEE Trans on Geosci Remote Sens, 2015, 53 (5): 248t-2495.
  • 10Lee J S, Grunes M R, Ainsworth T L, et al. Unsuper- vised classification using polarimetric decomposition and the complex Wishart classifier[ J ]. IEEE Trans on Geosci Remote Sens, 1999, 37 (5) : 2249-2258.

共引文献5

同被引文献18

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部