期刊文献+

亮度变化下室外场景图像特征点提取方法 被引量:7

Method of Extracting Feature Points from Outdoor Scene Images with Variable Brightness
下载PDF
导出
摘要 在室外场景的环境感知中,固定阈值的特征点提取算法,其特征点数量和重复率随亮度变化而急剧变化,针对该问题,本文提出了一种基于局部自适应阈值的特征点提取算法。该算法通过设置自适应参数,用动态局部阈值计算每一个像素阈值来筛选特征点,解决了单一阈值选取不当导致的特征点丢失或重叠问题,对像素亮度进行分类,逐层筛选出候选特征点,达到定向二进制简单描述符特征点的精确提取。实验结果表明:亮度在增加或减少60%范围内变化时,特征点分布均匀无重叠,特征点数量的极差为80,仅占原始亮度特征点数量的25%,整体重复率稳定在80%以上。 In environmental perception of outdoor scenes,the number and repetition rate of feature points extracted based on fixed threshold change dramatically with the change of brightness.To solve this problem,a feature point extraction algorithm based on local adaptive threshold was proposed.The algorithm filtered feature points by setting adaptive parameters and calculated each pixel threshold with dynamic local threshold. The feature points loss or redundancy caused by improperly selection of fixed threshold were overcomed. By classifying the brightness of pixels,the candidate feature points were screened layer by layer to achieve accurate extraction of oriented fast and rotated brief( ORB) feature points.The experimental results show that when the brightness decreases or increases within 60%,the distribution of feature points is uniform without overlap,and the range of the number of feature points is only 80,accounting for only 25% of feature points of original brightness.The overall repetition rate is stable at more than 80%.
作者 杨弘凡 李航 陈凯阳 李嘉琪 王晓菲 YANG Hongfan;LI Hang;CHEN Kaiyang;LI Jiaqi;WANG Xiaofei(Mechatronics Engineering School,Henan University of Science&Technology,Luoyang 471003,China)
出处 《河南科技大学学报(自然科学版)》 CAS 北大核心 2020年第1期18-23,M0003,共7页 Journal of Henan University of Science And Technology:Natural Science
基金 国家重点研发计划重点专项(2018YFB200502) 河南省科技攻关基金项目(182102110420)
关键词 环境感知 特征点提取 动态局部阈值 亮度变化 重复率 environmental perception feature point extraction dynamically local threshold variable brightness repetition rate
  • 相关文献

参考文献7

二级参考文献59

  • 1张晓华,山世光,曹波,高文,周德龙,赵德斌.CAS-PEAL大规模中国人脸图像数据库及其基本评测介绍[J].计算机辅助设计与图形学学报,2005,17(1):9-17. 被引量:40
  • 2杨必武,郭晓松.摄像机镜头非线性畸变校正方法综述[J].中国图象图形学报(A辑),2005,10(3):269-274. 被引量:99
  • 3Drummond T. Cipolla R. Real-time visual tracking of complex structures[J]' IEEE Trans on Pattern Analysis and Machine Intelligence. 2002. 24 (7): 932 - 946.
  • 4Rosten E. Drummond T. Fusing points and lines for high performance tracking[CJ II Proceedings of 10th IEEE International Conference on Computer Vision. Beijing. China:[so n.J. 2005:1508 -1515.
  • 5Basri R. Costa L. Geiger D. et al. Determining the similarity of deformable shapes[n. Vision Research. 1998,38(15) :2365 - 2385.
  • 6Bascle B, Deriche R. Region tracking through image se?quences[CJ II Proceedings of IEEE International Conference of Computer Vision. Cambridge, MA: IEEE Computer Society, 1995:302 - 307.
  • 7Lowe D. Distinctive image features from scale-invariant keypoints[J]' InternationalJournal of Computer Vision, 2004,60(2) :91-110.
  • 8Bay H, Tuytelaars T, Van Gool L. SURF: speeded up robust features[CJ II Proceedings of the European Conference on Computer Vision. Graz , Austrilia , Springer, 2006: 404 - 417.
  • 9Rosten E, Drummond T. A machine learning approach to corner detection[J]. IEEE Transactions on Pattern Analysis and Machione Intelligence, 2010, 32 (1): 105 - 119.
  • 10Taylor S, Rosten E, Drummond T. Robust feature matching in 2. 3 fls[CJ II Proceedings of IEEE CVPR Workshop on Feature Detectors and Descriptors: The State of The Art and Beyond. Miami, USA: IEEE Computer Society, 2009: 15 - 22.

共引文献96

同被引文献54

引证文献7

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部