期刊文献+

基于深度强化学习的移动边缘卸载机制 被引量:3

Mobile Edge Unloading Mechanism Based on Deep Reinforcement Learning
下载PDF
导出
摘要 随着未来5G移动网络的发展,为了满足用户在大量数据剧增的背景下实现更高带宽、更低时延的要求,移动边缘计算(MEC)技术正逐渐引起相关学者的重视。MEC可以将计算密集型任务迁移到MEC服务器,来扩展无线网络边缘的计算能力。论文考虑了一个多用户的MEC系统,提出了深度强化学习方法来优化即时奖励和长期成本。仿真结果表明,与其他方法相比,该方案在降低总成本上有明显优势。 With the development of 5G mobile networks in the future,in order to meet the requirements of users to achieve higher bandwidth and lower latency in the context of massive data explosion,mobile edge computing(MEC)technology is gradually attracting the attention of scholars.MEC can migrate computationally intensive tasks to the Oracle MEC server to extend the comput ing power at the edge of the wireless network.The paper considers a user's MEC system and proposes a deep reinforcement learning approach to optimize instant rewards and long-term costs.The simulation results show that compared with other methods,this scheme has obvious advantages in reducing costs.
作者 张东 刘林 ZHANG Dong;LIU Lin(No.91202 Troops of PLA,Huludao 125004)
机构地区 [
出处 《舰船电子工程》 2019年第10期166-169,173,共5页 Ship Electronic Engineering
关键词 移动边缘计算 计算卸载 Q-LEARNING 深度强化学习 mobile edge calculation computational unloading Q-learning deep reinforcement learning
  • 相关文献

参考文献5

共引文献106

同被引文献20

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部