期刊文献+

压缩感知测量矩阵综述 被引量:1

Overview of compressed sensing measurement matrices
下载PDF
导出
摘要 压缩感知是一种新的采样和重建数字信号的方法,可以在低于奈奎斯特采样率的条件下实现原始信号的精确恢复。在稀疏信号的精确重建中,测量矩阵十分关键。性能良好的测量矩阵可确保信号恢复的精确性,改善重建算法的性能。为比较在压缩感知中各矩阵性能的差异,本文使用两步迭代收缩阈值算法,比较高斯矩阵、伯努利矩阵、混沌矩阵、稀疏矩阵、托普利兹矩阵、循环矩阵、部分哈达玛矩阵在不同测量数目、信号稀疏度、噪声的大小对于信号重建成功率的影响。由实验结果可得,这七类矩阵中混沌矩阵为最优测量矩阵。 Compressed sensing theory is a new method for sampling and reconstruction of digital signals.It can recover the original signal accurately with lower than Nyquist sampling rate.The measurement matrix plays a crucial role in the process of sparse signal reconstruction.The measurement matrix with good performance can ensure the accuracy of signal reconstruction and improve the performance of reconstruction algorithm.In order to compare the difference in performance of each matrix in compressed sensing,the experiment uses a two-step iterative shrinkage threshold algorithm.Then we compare the influence of Gaussian Matrix,Bernoulli Matrix,Partial Hadamard Matrix,Toeplitz Matrix,Circulant Matrix,Chaotic Matrix and Sparse matrix on the number of different measurements,the signal sparsity,and the magnitude of the noise on the signal reconstruction success rate.The experimental results show that the performance of the chaotic random measurement matrix is optimal in these seven types of measurement matrices.
作者 宋梦蝶 SONG Mengdie(School of Electronics and Information Engineering,Anhui University,Hefei 230039,China)
出处 《电视技术》 2019年第6期1-6,57,共7页 Video Engineering
关键词 压缩感知 测量矩阵 限制等距特性 相干性 两步迭代收缩阈值算法 compressed sensing measurement matrix restricted isometric property coherence two-step iterative shrinkage threshold algorithm
  • 相关文献

参考文献3

二级参考文献138

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:70
  • 2D Donoho. Compressed sensing[ J]. IEEE Trans Inform Theory,2006,52(4) : 1289 - 1306.
  • 3M A T Figueiredo, R D Nowak, S J Wright. Gradient projection for sparse reconstruction: Appfication to compressed sensing and other inverse problems [ J ]. IEEE J Selected Topics in Signal Processing: Special Issue on Convex Optimization Methods for Signal Processing, 2007,1(4) :586 - 598.
  • 4I Daubechies, M Defrise, C De Mol. An iterative thresholding algorithm for finear inverse problems with a sparsity constraint [ J]. Comm Pure Appl Math,2004,57( 11 ):1413 - 1457.
  • 5T Blumensath, M Davies. Iterative hard thresholding for compressed sensing[ J]. Appl Comput Harmon Anal, 2009, 27 ( 3 ) : 265 - 274.
  • 6A C Gilbert, S Guha, P Indyk, S Muthukrishnan, M J Strauss. Near-optimal sparse Fourier representations via sampling[ A]. Proc. of the 2002 ACM Symposium on Theory of Computing STOC[C]. Montreal, Quebec, Canada, 2002. 152 - 161.
  • 7E Candbs, J Romberg, T Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information [ J]. IEEE Trans Inform Theory ,2006,52(2) :489- 509.
  • 8E Candes, T Tao. Error correction via linear programming [A]. Proc. of 46th Annual IEEE Symposium on Foundations of Computer Science FOCS [ C ] . Pittsburgh, Pennsylvania, USA. 2005.295 - 308.
  • 9S Mallat, Z Zhang. Matching pursuit in a time-frequency dictionary[ J]. IEEE Trans Singal Processing, 1993,41 (12) : 3397 - 3415.
  • 10E J Candes, T Tao. Decoding by linear programming [ J ]. IEEE Trans Inform Theory,2005,51 (12):4203- 4215.

共引文献465

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部