期刊文献+

网络视频数据获取与后处理技术综述 被引量:3

A review on the network video data acquisition and post processing
下载PDF
导出
摘要 视频在内容表达上具有直观性和丰富性的优点,其作为信息和知识的载体更容易被人们接受。近年来,随着互联网尤其是移动互联网技术的成熟,网络视频行业呈现出繁荣发展的态势。另外,以深度学习为代表的人工智能技术与视频数据相结合,推动了视频内容理解领域的核心技术突破,促成多项相关技术落地。可以预见,未来的信息检索系统将承载视频数据,而网络视频数据获取与后处理技术,作为视频信息检索系统数据来源的提供者,将发挥巨大的作用。本文综述了网络视频数据获取技术的现状,并对该方向的未来发展作了展望。 Video has the advantage of being intuitive and rich in content expression,and it is more easily accepted as a carrier of information and knowledge.In recent years,with the maturity of the internet,especially mobile internet,the online video industry has shown a prosperous development.In addition,the combination of artificial intelligence technology and video data represented by deep learning has promoted the core technological breakthroughs in the field of video content understanding,and has led to the emergence of a number of related technologies.It is foreseeable that future information retrieval systems will carry video data,and network video data acquisition technology,as a provider of data sources for video information retrieval systems,will play a huge role.This paper reviews the current status of network video data acquisition technology and looks forward to the future development of this direction.
作者 张昆 张峰 张德 王惠峰 王子玮 白立飞 熊荔 ZHANG Kun;ZHANG Feng;ZHANG De;WANG Huifeng;WANG Ziwei;BAI Lifei;XIONG Li(Information Science Academy,CETC,Beijing 100086,China)
出处 《电视技术》 2019年第6期24-30,44,共8页 Video Engineering
关键词 信息检索 网络视频 爬虫 镜头边界检测 关键帧 information retrieval network video spider shot boundary detection keyframe
  • 相关文献

参考文献2

二级参考文献27

  • 1李卫,刘建毅,何华灿,王枞.基于主题的智能Web信息采集系统的研究与实现[J].计算机应用研究,2006,23(2):163-166. 被引量:15
  • 2MURRAY B,MOORE A.Sizing the Internet[M].[S.l.]:Cyveillance Inc,2000.
  • 3LAWRENCE S,GILES L.Accessibility and distribution of information on the Web[J].Nature,1999,400(8):107-109.
  • 4CHO J,CARCIA M H.The evolution of the Web and implication for an incremental crawler[C]//Proc of the 26th International Conference on Very Large Databases (NVLDB-00).2000.
  • 5BREWINGTON B E,CYBENKO C.How dynamic is the Web[C]//Proc of the 9th International World Wide Web Conference.2000.
  • 6MENCZER F,PANT C,RUIZ M E.Evaluating topic-driven Web crawlers[C]//Proc of SIGIR'01.New Orleans,Louisiana:[s.n.],2001:241-249.
  • 7MENCZER F,PANT C,SRINIVASAN P.Topic-driven crawlers:machine learning issues[EB/OL].(2002-05-15).http://dollar.biz.uiowa.edu/-fil/papers.html.
  • 8CHO J,GARCIA M H,PAGE L.Efficient crawling through URL ordering[J].Computer Networks and ISDN Systems,1998,30(1-7):161-172.
  • 9DeBRA P,HOUBEN G,KORNATZKY Y,et al.Information retrieval in distributed hypertexts[C]//Proc of the 4th RIAO Conference.New York:[s.n.],1994:481-491.
  • 10HERSOVICI M,JACOVI M,MAAREK Y S,et al.The shark-search algorithm:an application:tailored Web site mapping[C]//Proc of the 7th International World Wide Web Conference.Brisbane:[s.n.],1998:65-74.

共引文献135

同被引文献18

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部