期刊文献+

一种新型的改进果蝇优化算法 被引量:2

A New Improved Fruit Fly Optimization Algorithm
下载PDF
导出
摘要 为了克服原始果蝇优化算法在求解多峰值函数和高维度函数时容易早熟、效率低等问题,针对原始果蝇优化算法中存在的弊端,创新性地提出一种基于随机策略及非线性步长递减的果蝇优化算法。随机策略的引入能够增加算法寻优时解的多样性,有效避免算法陷入局部极值。非线性步长递减可以使算法在寻优初期保持较大步长,以提高收敛速度,随着寻优的不断深入,步长值不断减小,以提高算法的寻优精度。将新改进的果蝇算法与原始果蝇算法、改进算法DS-FOA和改进算法LGMS-FOA进行寻优对比,实验结果表明,所提出的算法在寻优精度以及收敛速度上有明显提高。 In order to overcome the original fruit flies optimization algorithm in solving the problem that the multimodal function and high dimension function tends to premature and low efficiency,in view of the deficiencies in the original fruit flies optimization algorithm,innovatively pro poses a fruit flies optimization algorithm based on a random strategy and nonlinear diminishing step size.The introduction of stochastic strategy can increase the diversity of the algorithm's optimal solution and effectively avoid the algorithm falling into the local extremum.Nonlinear diminishing step size can keep relatively large at the beginning of the optimization algorithm.In order to improve the conver gence speed,with the deepening of the optimization,the step size decreases continuously to improve the optimization precision of the algo rithm.Compared with the original fruit flies algorithm,DS-FOA and LGMS-FOA optimization algorithm,the experimental results show that the proposed algorithm is improved obviously on the optimization precision and convergence speed.
作者 戈涛 张馨 GE Tao;ZHANG Xin(Hefei Public Training Center,Hefei 260012;School of Computer Science and Technology,Anhui University,Hefei 230601)
出处 《现代计算机》 2019年第29期16-20,共5页 Modern Computer
基金 国家自然科学基金项目(No.61374128)
关键词 果蝇优化算法 全局优化 多峰值函数 随机策略 Fruit Fly Algorithm Global Optimization Multi-Peak Function Random Strategy
  • 相关文献

参考文献4

二级参考文献47

  • 1金锋,宋士吉,吴澄.一类基于FSP问题Block性质的快速TS算法[J].控制与决策,2007,22(3):247-251. 被引量:6
  • 2徐静波.基于PSO算法的PID控制参数优化[J].东华大学学报(自然科学版),2007,33(1):135-138. 被引量:5
  • 3陶少辉,陈德钊,胡望明.LSSVM过程建模中超参数选取的梯度优化算法[J].化工学报,2007,58(6):1514-1517. 被引量:14
  • 4王凌.车问调度及其遗传算法[M].北京:清华大学出版社,2003:1-5.
  • 5Hart,P E,Nilsson,N J and Raphael,B. A formal basis for the heuristic determination of minimum cost paths [J]. IEEE Transactions on Systems Science and Cy- bernetics SSC4,1968(2) : 100-107.
  • 6Friedman, M. A mathematical programming model for optimal scheduling for buses depature under determin- istic condition [J]. Transportation Research, 1976, 10 (2) :83-90.
  • 7Gupta,Y P,Gupta,M C,Kumar,A and Sundram,C. A genetic algorithm-based approach to cell composition and layout design problems[J]. Int. Journal of Produc- tion Research, 1996,34 (2) : 447-482.
  • 8Yan,S Y,Lee W T and Shih,Y L. A path-based analo- gous particle swarm optimization algorithm for mini- mum cost network flow problems with concave arc costs[J]. Transportation Planning Journal, 2007, 36 (3) ..393-424.
  • 9Pan,W T. A new evolutionary computation approach: Fruit Fly Optimization Algorithm[C]. 2011 Conference of Digital Technology and innovation Management Tai- pei,2011.
  • 10Pan,W T. A new fruit fly optimization algorithm: Taking the financial distress model as an example[J]. Knowledge-Based Systems, In Press, 2011.

共引文献213

同被引文献32

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部