期刊文献+

基于卷积神经网络的课堂人脸打卡算法 被引量:4

Classroom Face Register Algorithm Based on Convolutional Neural Network
下载PDF
导出
摘要 在现行的学校教育中,课堂效率尤为重要,为了节约教师时间,提高课堂效率与时间利用率,提出利用计算机视觉检测课堂中的人脸,并对人脸进行识别和记录,将结果反馈给课堂教师,使其对提高课堂效率,课堂时间使用率有着重大的意义。提出使用基于Dlib的人脸检测器,搭配基于卷积神经网络的人脸识别算法来进行实现对课堂的人脸打卡。实验表明:人脸检测算法在CelebFaces图像库中有着96.7%的准确率,人脸识别算法在课堂场景下的图像中有着88.8%的准确率。 In the current school education,classroom efficiency is particularly important.In order to save teachers time and improve classroom effi ciency and time utilization,proposes to use computer vision to detect faces in the classroom,identify and record faces,and feedback the re sults.Classroom teachers make it important to improve classroom efficiency and classroom time usage.Proposes the use of Dlib-based face detector,combined with convolutional neural network-based face recognition algorithm to achieve face register in the classroom.Experi ments show that the face detection algorithm has 96.7%accuracy in the CelebFaces image library,and the face recognition algorithm has an accuracy of 88.8%in the image in the classroom scene.
作者 涂鑫 TU Xin(Department of Computer and Software Engineering,Jincheng College,Sichuan University,Chengdu 610065)
出处 《现代计算机》 2019年第29期39-43,共5页 Modern Computer
关键词 课堂考勤 人脸检测 人脸识别 卷积神经网络 深度学习 Class Attendance Face Detection Face Recognition Convolutional Neural Network Deep Learning
  • 相关文献

参考文献4

二级参考文献10

共引文献43

同被引文献20

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部