期刊文献+

自适应线性神经网络LMM算法的谐波辨识技术研究 被引量:3

Research on harmonic identification technology of adaptive linear neural network LMM algorithm
下载PDF
导出
摘要 介绍了组合适应线性神经网络最小平均值评估法(Adaline-LMM)对脉冲控制信号的拟合分析方法,用于对电力控制系统中的信号评估。通过对系统信号中的各个谐波分量的幅值和相位进行谐波辨识,并对Adaline的权重向量进行更新,同时对目标函数进行技术估计。其中,自适应神经网络中的权重向量由LMM算法进行迭代更新,通过最小平均值估计算法的引入,减小由于脉冲噪声引起的暂时波动的影响。通过对给定脉冲信号进行拟合,可以发现所提方法具有较高的计算精度。 The combined adaptive linear neural network minimum mean evaluation method(Adaline-LMM)is introduced in this paper,which can be used to perform the fitting analysis of the pulsed control signal and evaluate the signals in the power control system.The harmonic identification is conducted and the weight vector of Adaline is updated by means of the amplitude and phase of each harmonic component in the system signal.And also the target function is estimated.The LMM algorithm is used to conduct the iterative update of the weight vector in the adaptive neural network.The impact of temporary fluctuations caused by impulse noise is reduced due to the introduction of the minimum mean estimation algorithm.It is found that the method has high calculation accuracy by fitting a given pulse signal.
作者 杜春晖 张晔 DU Chunhui;ZHANG Ye(Hebei University of Architecture,Zhangjiakou 075000,China)
出处 《现代电子技术》 北大核心 2019年第21期45-48,52,共5页 Modern Electronics Technique
关键词 Adaline-LMM 谐波辨识 信号评估 拟合分析 权重向量更新 信号拟合 Adaline-LMM harmonic identification signal assessment fitting analysis weight vector renewal signal fitting
  • 相关文献

参考文献5

二级参考文献33

  • 1邓集祥,涂进,陈武晖.大干扰下主导低频振荡模式的鉴别[J].电网技术,2007,31(7):36-41. 被引量:44
  • 2焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1991.12-14.
  • 3郝正航,李少波.白噪声激励下的低频振荡模态参数辨识方法[J].电力系统自动化,2007,31(15):26-29. 被引量:17
  • 4Pierre J W, Trudnowski D J, Donnelly M K. Initial results in eleetromechanical mode identification from ambient data[J]. IEEE Trans on Power Systems, 1997, 12(3): 1245-1251.
  • 5WiesR W, Pierre J W, Trudnowski D J. Use of ARMA block processing for estimating stationary low frequency electromechanical modesofpowersystems[J]. IEEE Trans on Power Systems, 2003, 18(1): 167-173.
  • 6Zhou N, Pierre J W, Trudnowski D, et al. Robust RLS methods for online estimation of power system electromechanical modes[J]. IEEE Trans on Power Systems, 2007, 22(3): 1240-1249.
  • 7Wies R W, PierreJ W, Trudnowski D J. Use of least-mean squares (LMS) adaptive filtering technique for estimating low-frequency electromechanical modes in power systems[C]// Proceedings of the 2002 Control Conference, Hilton Anchorage and Egan Conention Center. Anchorage, Alaska, USA: IEEE, 2002: 4867-4873.
  • 8Wies R W, Balasubramanian A, Pierre J W. Combing least mean squares adaptive filter and Auto-Regressive block processing techniques for estimating the low-frequency electromechanical modes in power systems[C]//Power Engineering Society General Meeting. Montreal Que, Denver Colorado, USA: IEEE, 2004: 1-8.
  • 9Wies R W, Balasubramanian A, Pierre J W. Using adaptive step-size least mean squares (ASLMS)for estimating low-frequency eletromechanical modes in power systems[C]//International Conference on Probabilistic Methods Applied to Power Systems, PMAPS. Stockholm, USA: IEEE, 2006: 1-8.
  • 10Zou Y, Chan S C, Least mean M-estimate algorithms for robust adaptive filtering in impulsive noise[J]. IEEE Trans. Circuits Syst. II, 2000, 47(13): 564-1569.

共引文献13

同被引文献54

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部