摘要
随着售电侧的逐步开发以及用电大数据时代的到来,短期负荷预测更加复杂,必须综合考虑实时电价、用户历史用电行为以及预测模型的精度和时间复杂度。在分析各种短期负荷影响因素的基础上,利用K-means聚类方法对用户历史用电行为进行聚类,再利用兼具有自动寻找隐层节点数和在线学习功能的I-OS-ELM学习机进行负荷预测。实例预测结果证明,该模型能够有效地解决实时电价机制下短期负荷的预测问题。
With the gradual development of power selling side and the arrival of big data era,short-term load forecasting is more complex.It is necessary to consider the real-time electricity price and users historical electricity usage behavior,as well as the accuracy and time complexity of the prediction model.Based on the analysis of various short-term load influencing factors,we used K-means clustering method to cluster users historical electricity usage behavior.Then we used I-OS-ELM learning machine,which has the function of searching hidden layer nodes automatically and learning online,to forecast the load.The forecasting results show that the model can effectively solve the short-term load forecasting problem under the real-time electricity price mechanism.
作者
杨本臣
于坤鹏
张军
Yang Benchen;Yu Kunpeng;Zhang Jun(School of Electrical and Control Engineering,Liaoning Technical University,Huludao 125105,Liaoning,China)
出处
《计算机应用与软件》
北大核心
2019年第11期91-95,187,共6页
Computer Applications and Software
基金
国家自然科学基金项目(61772249)
辽宁省教育厅基金项目(LJ2017FAL020)
关键词
实时电价
用电行为
K
means聚类算法
I-OS-ELM学习机
Real-time electricity price
Electricity usage behavior
K-means clustering algorithm
I-OS-ELM learning machine