期刊文献+

基于认证数据的学生上网时间特征分析 被引量:4

ANALYSIS OF STUDENTS’ ONLINE TIME CHARACTERISTICS BASED ON AUTHENTICATION DATA
下载PDF
导出
摘要 为研究高校本科生上网时间特征,将学生上网认证数据转换成学生上网时长向量集.利用K-canopy算法去除离群点,并通过指标投票机制得到最佳聚类个数;利用K-means算法分别对工作日和周末上网时长向量集进行聚类,将工作日向量集聚为6个类、周末向量集聚为5个类;分析聚类结果,得到各类学生的上网时间特征、学生个人的上网时间特征和各专业中各年级学生上网时间特征.学生上网时间特征可为专业课程时间安排、学生管理等工作提供参考. For studying undergraduates online time characteristics,the online authentication data of undergraduates were transformed into the vector set of their online time.K-canopy algorithm was used to remove outliers,and the quota voting mechanism was adopted for selecting the optimal number of clusters.The K-means algorithm was adopted to cluster the vectors of the time spent on the Internet on weekdays and weekends respectively.The vectors of the weekdays were clustered into 6 classes,and the vectors of weekends were clustered into 5 classes.By analyzing the clustering results,we can acquire online time characteristics of all kinds of students,a single student and students in different grades of a certain specialty.All those online time characteristics can provide reference for time arrangement of professional courses and student management.
作者 郭玉彬 吴宇航 薄傲峰 郑淑敏 张晓鹏 Guo Yubin;Wu Yuhang;Bo Aofeng;Zheng Shumin;Zhang Xiaopeng(College of Mathematics and Information,South China Agricultural University,Guangzhou 510642,Guangdong,China;School of Data and Computer Science,Sun Yat-sen University,Guangzhou 510006,Guangdong,China)
出处 《计算机应用与软件》 北大核心 2019年第11期101-106,133,共7页 Computer Applications and Software
基金 国家重点研发计划项目(2016YFD0800307) 国家科技支撑计划项目(2015BAD06B03-3)
关键词 认证数据 时间特征 K-canopy算法 K-MEANS算法 Authentication data Time characteristic K-canopy algorithm K-means algorithm
  • 相关文献

参考文献8

二级参考文献45

共引文献1142

同被引文献30

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部