期刊文献+

基于AE-CNN的手势识别算法

HAND GESTURE RECOGNITION ALGORITHM BASED ON AE-CNN
下载PDF
导出
摘要 在手势识别的过程中,手势的多样性和复杂程度会对手势识别率造成很大的影响.随着深度学习的快速发展,卷积神经网络在手势识别领域取得了突破性进展.但基于卷积神经网络的方法仍存在收敛速度慢、识别率低等问题,因此手势识别很难取得较好成果.为了解决卷积神经网络在手势识别中存在的收敛速度慢、识别率低问题,提出一种AE-CNN的手势识别算法.实验结果表明,该算法收敛速度快、识别准确率高,并且没有明显增加识别过程的耗时性. In the process of gesture recognition, the diversity and complexity of gesture greatly influence the recognition rate. With the rapid development of deep learning, the convolution neural network (CNN) has made a breakthrough in the field of gesture recognition. The existing methods based on CNN still have some problems such as slow convergence speed and low recognition rate, so it is difficult to achieve good results in gesture recognition. To solve these problems, this paper proposes an AE-CNN recognition algorithm. The results show that the proposed algorithm has fast convergence speed, high recognition rate, and does not significantly increase the time consumption of the recognition process.
作者 付优 任芳 Fu You;Ren Fang(Department of Computer Engineering,Shanxi College of Architectural,Jinzhong 030619,Shanxi,China;College of Mathematics and Information Science,Shaanxi Normal University,Xi an 710061,Shaanxi,China)
出处 《计算机应用与软件》 北大核心 2019年第11期157-160,167,共5页 Computer Applications and Software
基金 国家自然科学基金项目(61602072)
关键词 手势识别 卷积神经网络 深度学习 Hand gesture recognition Convolutional neural network Deep learning
  • 相关文献

参考文献5

二级参考文献98

  • 1Li W Q, Zhang Z Y, Liu Z C. Action recognition based on a bag of 3D points. In:Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. San Francisco, CA:IEEE, 2010. 9-14.
  • 2Yang X D, Zhang C Y, Tian Y L. Recognizing actions using depth motion maps-based histograms of oriented gradients. In:Proceedings of the 20th ACM International Conference on Multimedia. Nara, Japan:ACM, 2012. 1057-1060.
  • 3Ofli F, Chaudhry R, Kurillo G, Vidal R, Bajcsy R. Sequence of the most informative joints (SMIJ):a new representation for human skeletal action recognition. Journal of Visual Communication & Image Representation, 2014, 25(1):24-38.
  • 4Theodorakopoulos I, Kastaniotis D, Economou G, Fotopoulos S. Pose-based human action recognition via sparse representation in dissimilarity space. Journal of Visual Communication and Image Representation, 2014, 25(1):12-23.
  • 5Zhao S C, Liu Y B, Han Y H, Hong R C. Pooling the convolutional layers in deep convnets for action recognition[K][Online], available:http://120.52.73.77/arxiv.org/pdf/1511.02126v1.pdf, November 1, 2015.
  • 6Liu C, Xu W S, Wu Q D, Yang G L. Learning motion and content-dependent features with convolutions for action recognition. Multimedia Tools and Applications, 2015, http://dx.doi.org/10.1007/s11042-015-2550-4.
  • 7Baccouche M, Mamalet F, Wolf C, Garcia C, Baskurt A. Sequential deep learning for human action recognition. Human Behavior Understanding. Berlin:Springer, 2011. 29-39.
  • 8Lefebvre G, Berlemont S, Mamalet F, Garcia C. BLSTM-RNN based 3d gesture classification. Artificial Neural Networks and Machine Learning. Berlin:Springer, 2013. 381-388.
  • 9Du Y, Wang W, Wang L. Hierarchical recurrent neural network for skeleton based action recognition. In:Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA:IEEE, 2015. 1110-1118.
  • 10Taylor G W, Hinton G E, Roweis S. Modeling human motion using binary latent variables. In:Proceedings of Advances in Neural Information Processing Systems. Cambridge, MA:MIT Press, 2007. 1345-1352.

共引文献602

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部