期刊文献+

融合朴素贝叶斯和协同过滤的外卖推荐并行算法研究 被引量:2

PARALLEL ALGORITHM FOR TAKEAWAY RECOMMENDATION WITH NAIVE BAYES AND COLLABORATIVE FILTERING
下载PDF
导出
摘要 为了提高个性化外卖推荐系统的准确率,结合传统的协同过滤算法中存在的数据稀疏性问题,提出一种融合朴素贝叶斯和协同过滤的外卖推荐并行算法.采用并行的朴素贝叶斯分类算法构建外卖评论文本情感分类器,量化评论文本情感值;结合评分数值构建外卖综合评分模型;将综合评分结果整合到推荐系统的训练集,利用优化的并行ALS算法进行推荐.实验结果表明,该推荐算法不仅在推荐准确率上有一定的提高,还具有良好的加速比.该算法应用于个性化外卖推荐是可行和有效的. In order to improve the accuracy of the personalized takeaway recommendation system,combined with the problem of data sparsity in the traditional collaborative filtering algorithm,this paper proposes a parallel algorithm for takeaway recommendation with naive Bayes and collaborative filtering.The parallel naive Bayes classification algorithm was used to construct a takeaway comment text sentiment classifier,which aimed to quantify the emotional value of the comment text.The comprehensive scoring model for takeaway was constructed by combining the scoring values.The comprehensive scoring results were integrated into the training set of the recommendation system,and the optimized parallel ALS algorithm was used for recommendations.Experimental results show that our algorithm not only has a certain improvement in the recommendation accuracy rate,but also has a good acceleration ratio.It is feasible and effective to apply the algorithm to personalized takeaway recommendation.
作者 鲍凯丽 刘其成 牟春晓 Bao Kaili;Liu Qicheng;Mu Chunxiao(School of Computer and Control Engineering,Yantai University,Yantai 264000,Shandong,China)
出处 《计算机应用与软件》 北大核心 2019年第11期250-255,285,共7页 Computer Applications and Software
基金 国家自然科学基金项目(61702439) 国家海洋局“十三五”海洋经济创新发展示范重点项目(YHC-ZB-P201701) 山东省自然科学基金项目(ZR2016FM42) 山东省重点研发计划项目(2016GGX109004)
关键词 外卖 协同过滤 朴素贝叶斯 ALS算法 并行 Takeaway Collaborative filtering Naive Bayes ALS algorithm Parallel
  • 相关文献

参考文献12

二级参考文献72

  • 1邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 2李丹,郑志安.产业链主导产品评价模型的构建及其应用[J].商场现代化,2005(10X):145-146. 被引量:6
  • 3邓维斌,黄蜀江,周玉敏.基于条件信息熵的自主式朴素贝叶斯分类算法[J].计算机应用,2007,27(4):888-891. 被引量:16
  • 4SCHAFER J B,KONSTAN J A,RIEDL J.E-commerce recommendation applications[J].Data Mining and Knowledge Discovery,2001,5(1/2):115-153.
  • 5PHUONG N D,PHUONG T M.Collaborative filtering by multi-task learning[C]//Proceedings of the IEEE International Conference.Washington,DC:IEEE,2008:227-232.
  • 6SARWAR B,KARYPIS G,KONSTAN J,et al.Analysis of recommendation algorithms for E-commerce[C]//Proceedings of the 2nd ACM Conference on Electronic Commerce.New York:ACM Press,2000:158-167.
  • 7SARWAR B,KARYPIS G,KONSTAN J,et al.Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th International World Wide Web Conference.New York:ACM Press,2001:285-295.
  • 8HARRY Z,SHENG S L.Learning weighted naive Bayesian with accurate ranking[C]//Proceedings of 4th IEEE International Conference on Data Mining.Washington,DC:IEEE,2004:567-570.
  • 9中国互联网络信息中心.第32次中国互联网络发展状况统计报告[R].2013-07-17(4).
  • 10贺仲雄,隋志强.预测、决策的新方法——模糊、灰色、物元空间决策系统[J]系统工程与电子技术,1986(07).

共引文献275

同被引文献15

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部