期刊文献+

遗传算法优化支持向量机的光伏阵列故障诊断研究 被引量:7

Research on fault diagnosis of photovoltaic array based on Support Vector Machine optimized by Genetic Algorithm
下载PDF
导出
摘要 研究了支持向量机(SVM)方法在光伏阵列故障诊断上的运用,对光伏阵列的输出特性以及故障类型进行了分析总结。支持向量机由于存在惩罚因子系数与核函数系数,在选用径向基核函数后通过遗传算法对其参数进行寻优,通过Matlab仿真实验得到数据,利用寻优后的参数建立模型训练与验证。研究结果表明:支持向量机使用通过遗传算法优化得到的参数在光伏阵列故障诊断上有较高的准确度。 The application of Support Vector Machine(SVM)in photovoltaic array fault diagnosis is studied.The output characteristics and fault types of photovoltaic arrays are analyzed and summarized.Because of the existence of penalty factor coefficient and kernel function coefficient,the Support Vector Machine is optimized by Genetic Algorithm after choosing the radial basis function,and the model is established by using the optimized parameters.The data are obtained through Matlab simulation experiment and the model is trained and validated.The results show that the Support Vector Machine optimized by Genetic Algorithm has high accuracy.
作者 郭浩然 李泽滔 GUO Haoran;LI Zetao(The Electrical Engineering College,Guizhou University,Guiyang 550025,China)
出处 《智能计算机与应用》 2019年第5期58-62,共5页 Intelligent Computer and Applications
关键词 光伏阵列 故障分类 遗传算法 支持向量机 photovoltaic array fault classification Genetic Algorithm Support Vector Machine
  • 相关文献

参考文献2

二级参考文献15

共引文献84

同被引文献96

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部