期刊文献+

一种改进型Adaboost算法的人脸检测 被引量:4

An improved Adaboost algorithm for face detection
下载PDF
导出
摘要 原有的Adaboost算法在复杂背景及光源下,很容易出现人脸的误检问题,从而使人脸误检率较高。人脸相似区域的样本难以分类,导致出现权重过拟合现象使检测率降低。针对这些问题,本文提出了一种YCbCr肤色区域分割+改进型Adaboost算法的人脸检测算法。采用肤色区域分割排除复杂背景及光源的影响,将权重更新与正负样本误检率相结合,抑制人脸相似区域的权重过拟合现象,同时引入符合人脸的Haar-Like特征进一步提高检测率。通过实验证明,本文提出的算法在人脸检测中提高了检测率,降低了误检率和检测所需时间。 The original Adaboost algorithm is prone to face false detection under complex background and light source,which leads to a high rate of face false detection.It is difficult to classify the samples of face similar regions,which leads to the phenomenon of weight overfitting and reduces the detection rate.To solve these problems,this paper proposes a face detection algorithm based on YCbCr skin color region segmentation+improved Adaboost algorithm.Skin color region segmentation is adopted to exclude the influence of complex background and light source,weight updating is combined with positive and negative sample false detection rate,which could suppress the weight overfitting phenomenon in face similar areas.Meanwhile,Haar-Like features conforming to face are introduced to further improve the detection rate.Experimental results show that the algorithm proposed in this paper improves the detection rate,reduces the false detection rate and the detection time.
作者 刘燕 贺松 成雨风 LIU Yan;HE Song;CHENG Yufeng(College of Big Data and Information Engineering,Guizhou University,Guiyang 550025,China)
出处 《智能计算机与应用》 2019年第5期98-101,110,共5页 Intelligent Computer and Applications
基金 贵州省数字健康管理工程技术研究中心项目(黔科合G字[2014]4002号)
关键词 HAAR-LIKE特征 ADABOOST 肤色分割 人脸检测 Haar-Like characteristics Adaboost skin color division face detection
  • 相关文献

参考文献5

二级参考文献45

  • 1孔凡芝,张兴周,谢耀菊.基于Adaboost的人脸检测技术[J].应用科技,2005,32(6):7-9. 被引量:19
  • 2武妍,项恩宁.动态权值预划分实值Adaboost人脸检测算法[J].计算机工程,2007,33(3):208-209. 被引量:12
  • 3陆璇.现代应用数学手册:概率统计与随机过程卷[M].北京:清华大学出版社,2000.188-238.
  • 4Belhumeur P, Hespanha J, Kriegman D,et al. Eigenfaces vs. Fisher Faces: Recognition Using Class Specific Linear Projection [ J ]. IEEE Trans Pattern Analysis and Machine Intelligence, 1997, (7) : 711 - 720.
  • 5Yang M H, Kriegman D, Ahuja N. Detecting faces in Images: A Survey [ J ]. IEEE Trans Pattern Analysis and Machine Intelligence, 2002,24 ( 1 ):34 -58.
  • 6Freund F, Schapire R E. A Decision -theoretic Generalization of on Line Learning and an Application to Boosting [ J ]. Journal of Computer and System Sciences, 1997,55 ( 1 ) : 119 - 139.
  • 7SCHAPIRE R E, FREUND Y, BARTLETT Y, et al. Boosting the Margin: A New Explanation for the Effectiveness of Voting Methods [ J]. Annals of Statistics, 1998,26 : 1651 - 1686.
  • 8Rainer Lienhart, Jochen Maydt. An Extended Set of Haar -like Features for Rapid Object Detection [ J]. Intel Labs Intel Corporation, 2002,1:900 - 903.
  • 9Shen L, Bai L, Fairhurst M. Gabor Wavelets and General Discriminant Analysis for Face Identification and Verification [ J ]. Image and Vision Computing,2007,25 (5) :553 - 563.
  • 10Xie X, Lam K M. Gabor- based Kernel PCA with Doubly Nonlinear Mapping for Face Recognition with A Single Face Image [J]. IEEE Trans on Image Process,2006,15(9) :2481 -2492.

共引文献69

同被引文献41

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部