期刊文献+

基于随机森林和行为相似性的老人居家行为识别方法 被引量:2

Home behavior recognition method for the elderly based on Random Forest and behavioral similarity
下载PDF
导出
摘要 在居家养老服务中,如何获取老人居家活动,是精确主动为老人提供居家服务的关键问题。本文以居家养老服务为研究背景,首先分析了居家养老服务中活动的类别,以及各类活动所包含的行为。然后建立了老人居家行为识别问题模型,阐述了使用情境感知技术来获取老人行为的解决思路,进而提出了基于随机森林和行为相似性的两层行为识别算法。最后通过大量实验验证了算法的正确性与性能。本文提出的行为识别算法能够准确识别老人行为,其准确率可达到95.59%,效果优于同类其它方法。 In home-based care service,how to precisely obtain behaviors of the elderly is a key issue to provide high-quality home services for them.Thus,this paper studies the types of activities in home-based care service and the relationship between activities and behaviors.Afterwards,the paper proposes a model of behavior recognition for the elderly at home and decides to use context-aware techniques to obtain the behavior of the elderly.Then,a two-layer behavior recognition algorithm based on Random Forest and behavioral similarity is proposed.Finally,the paper conducts a series of experiments to show the correctness and performance of the algorithm.The proposed algorithm for elderly people in this paper can accurately identify the behavior,and the accuracy rate is over 95.59%,which is better than other methods.
作者 潘宇欣 郑彬 张龙 于鹏飞 徐汉川 PAN Yuxin;ZHENG Bin;ZHANG Long;YU Pengfei;XU Hanchuan(School of Computer Science and Technology,Harbin Institute of Technology,Harbin 150001,China;Shangdong University,Jinan 250100,China;Shandong Yidong Network Technology Co.,Ltd.,Jinan 250100,China)
出处 《智能计算机与应用》 2019年第5期312-319,共8页 Intelligent Computer and Applications
基金 国家重点研发计划资助项目(2018YFB1402901)
关键词 居家养老服务 情境感知 行为识别 随机森林 行为相似性 home-based care service context awareness behavior recognition Random Forest behavioral similarity
  • 相关文献

参考文献2

二级参考文献53

  • 1Fujiyoshi H, Lipton A J, Kanade T. Real-time human mo- tion analysis by image skeletonization. IEICE Transactions on Information and Systems, 2004, 87-D(1): 113-120.
  • 2Chaudhry R, Ravichandran A, Hager G, Vidal R. His- tograms of oriented optical flow and Binet-Cauchy kernels on nonlinear dynamical systems for the recognition of hu- man actions. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009. 1932-1939.
  • 3Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of the 2005 IEEE Con- ference on Computer Vision and Pattern Recognition. San Diego, CA, USA: IEEE, 2005. 886-893.
  • 4Lowe D G. Object recognition from local scale-invariant fea- tures. In: Proceedings of the 7th IEEE International Confer- ence on Computer Vision. Kerkyra: IEEE, 1999. 1150-1157.
  • 5Schuldt C, Laptev I, Caputo B. Recognizing human actions: a local SVM approach. In: Proceedings of the 17th In- ternational Conference on Pattern Recognition. Cambridge: IEEE, 2004. 32-36.
  • 6Dollar P, Rabaud V, Cottrell G, Belongie S. Behavior recog- nition via sparse spatio-temporal features. In: Proceedings of the 2005 IEEE International Workshop on Visual Surveil- lance and Performance Evaluation of Tracking and Surveil- lance. Beijing, China: IEEE, 2005.65-72.
  • 7Rapantzikos K, Avrithis Y, Kollias S. Dense saliency-based spatiotemporal feature points for action recognition. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009. 1454-1461.
  • 8Knopp J, Prasad M, Willems G, Timofte R, Van Gool L. Hough transform and 3D SURF for robust three dimensional classification. In: Proceedings of the llth European Confer- ence on Computer Vision (ECCV 2010). Berlin Heidelberg: Springer. 2010. 589-602.
  • 9Klaser A, Marszaeek M, Schmid C. A spatio-temporal de- scriptor based on 3D-gradients. In: Proceedings of the 19th British Machine Vision Conference. Leeds: BMVA Press, 2008. 99.1-99.10.
  • 10Wang H, Ullah M M, Klaser A, Laptev I, Schmid C. Evalua- tion of local spatio-temporal features for action recognition. In: Proceedings of the 2009 British Machine Vision Confer- ence. London, UK: BMVA Press, 2009. 124.1-124.11.

共引文献139

同被引文献16

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部