期刊文献+

嵌入项目疲劳和多样偏好的聚合推荐算法

Aggregation recommendation algorithm for embedding item fatigue and diversity preference
下载PDF
导出
摘要 为了解决推荐列表偏向于热门项目,多样性差的问题,提出了ARIFDP算法(aggregation recommendation algorithm for embedding item fatigue and diversity preference)。首先通过对用户历史反馈数据分析用户的多样性偏好,得出用户的多样倾向度,进而构造了与评价次数负相关的项目疲劳函数,最终将矩阵分解与项目疲劳函数相聚合,并加入多样倾向度调节项目疲劳函数所占权重,增加了冷门项目被推荐的概率。实验结果表明,ARIFDP算法能在保证准确率的前提下有效提高推荐结果的多样性。 In order to solve the problem that the recommendation list is biased towards popular projects and with poor diversity,this paper proposed the ARIFDP(aggregation recommendation algorithm for embedding item fatigue and diversity prefe-rence)algorithm.First,it analyzed the user’s diversity preferences by using the historical feedback data of the user to derive the user,got the degree of diversification.And then it constructed a project fatigue function negatively related to the number of evaluations;eventually aggregated the matrix decomposition and the project fatigue function,and the inclusion of various propensity degrees adjusted the weight of the fatigue function of the project,and increased the probability of the proposed project.Experimental results show that the ARIFDP algorithm can effectively improve the diversity of recommendation results on the premise of ensuring accuracy.
作者 阙正昊 邓明通 刘学军 李斌 Que Zhenghao;Deng Mingtong;Liu Xuejun;Li Bin(College of Computer Science&Technology,Nanjing Tech University,Nanjing 211816,China)
出处 《计算机应用研究》 CSCD 北大核心 2019年第11期3220-3223,3257,共5页 Application Research of Computers
基金 江苏省重点研发计划(社会发展)资助项目(BE2015697) 国家自然科学基金资助项目(61203072)
关键词 主题模型 矩阵分解 多样倾向度 项目疲劳函数 推荐多样性 topic model matrix factorization diversity tendency item fatigue function recommendation diversity
  • 相关文献

参考文献1

二级参考文献20

  • 1Balabanovic M, Shoham Y. Fab: Content-based, collaborative recommendation[J]. Communications of the ACM, 1997, 40(3): 66-72.
  • 2Ma H, Yang H, Lyu M R, et al. Scree, Social recommendation using probabilistic matrix factorization[CJ IIProc of the 17th ACM Conf on Information and Knowledge Management. New York: ACM, 2008: 931-940.
  • 3Salakhutdinov R, Mnih A. Probabilistic matrix factorization[J]. Advances in Neural Information Processing Systems, 2008,200): 1257-1264.
  • 4amali M, Ester M. A matrix factorization technique with trust propagation for recommendation in social networks[CJ IIProc of the 4th ACM Conf on Recommender Systems. New York: ACM, 2010: 135-142.
  • 5BobadillaJ, Ortega F, Hernando A, et al, A collaborative filtering approach to mitigate the new user cold start problem[J]. Knowledge-Based Systems, 2012, 26(10): 225-238.
  • 6Ma H, King I, Lyu M R. Effective missing data prediction for collaborative filtering[CJ IIProc of the 30th Annual Int ACM SIGIR Conf on Research and Development in Information Retrieval. New York: ACM, 2007: 39-46.
  • 7WangJ, de Vries A p, Reinders MJ T. Unifying user-based and item-based collaborative filtering approaches by similarity fusion[CJ IIProc of the 29th Annual lnt ACM SIGlR Conf on Research and Development in Information Retrieval. New York: ACM, 2006: 501-508.
  • 8Brynjolfsson E, HuJeffrey v, Smith M. From niches to riches anatomy of the long tail[J]. Sloan Management Review, 2006, 47(4): 67-71.
  • 9Park YJ, Tuzhilin A. The long tail of recommender systems and how to leverage it[CJ IIProc of the 2008 ACM Conf on Recommender Systems. New York: ACM, 2008: 11-18.
  • 10Massa P. Avesani P. Trust-aware recommender systems[CJ IIProc of the, 2007 ACM Conf on Recommender Systems. New Y()rk: ACM. 2007: 17-24.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部