期刊文献+

基于分块存储格式的稀疏线性系统求解优化 被引量:3

Optimization of solving sparse linear system based on blocked storage format
下载PDF
导出
摘要 针对基于GPU求解大规模稀疏线性方程组进行了研究,提出一种稀疏矩阵的分块存储格式HMEC(hybrid multiple ELL and CSR)。通过重排序优化系数矩阵的存储结构,将系数矩阵以一定的比例分块存储,采用ELL与CSR存储格式相结合的方式以适应不同的分块特征,分别使用适用于不对称矩阵的不完全LU分解预处理BiCGStab法和对称正定矩阵的不完全Cholesky分解预处理共轭梯度法求解大规模稀疏线性系统。实验表明,应用HMEC格式存储稀疏矩阵并以调用GPU kernel的方式实现前述两种方法,与其他存储格式的实现方式作比较,最优可分别获得31.89%和17.50%的加速效果。 This paper proposed a storage format HMEC(Hybrid Multiple ELL and CSR)of sparse matrix to solve large sparse linear equations on GPU.Firstly,it optimized the storage structure of the coefficient matrix by reordering.Secondly,it stored the coefficient matrix in a certain scale block.Then it adopted an approach by combining ELL and CSR storage format to adapt to different characteristics of blocks.At last,it took bi-conjugate gradient stabilized(BiCGStab)and conjugate gradient(CG)iterative methods to solve large sparse linear systems,they were respectively preconditioned by incomplete-LU and incomplete-Cholesky factorization for asymmetric and symmetric positive definite linear matrices.Experiments show that comparing the way by storing sparse matrices in HMEC format with other ways by storing in the common storage format,the acceleration of the best available it can get are 31.89%and 17.50%.
作者 程凯 田瑾 吴飞 汪茹 李洪芹 Cheng Kai;Tian Jin;Wu Fei;Wang Ru;Li Hongqin(College of Electronic&Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China)
出处 《计算机应用研究》 CSCD 北大核心 2019年第11期3352-3356,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61272097) 上海市自然科学基金资助项目(15ZR1418900)
关键词 GPU加速 共轭梯度 稳定双共轭梯度 重排序 HMEC存储格式 稀疏矩阵与向量乘 GPU acceleration conjugate gradient bi-conjugate gradient stabilized reorder HMEC(hybrid multiple ELL and CSR)storage format sparse matrix-vector multiplication
  • 相关文献

参考文献2

二级参考文献24

  • 1袁伟,张云泉,孙家昶,李玉成.国产万亿次机群系统NPB性能测试分析[J].计算机研究与发展,2005,42(6):1079-1084. 被引量:13
  • 2徐世浙,刘斌.电导率分层连续变化的水平层的大地电磁正演[J].地球物理学报,1995,38(2):262-268. 被引量:21
  • 3王若,王妙月,卢元林.三维三分量CSAMT法有限元正演模拟研究初探[J].地球物理学进展,2007,22(2):579-585. 被引量:27
  • 4Coggon J H. Electromagnetic and electrical modeling by the finite element method[J]. Geophysics, 1971, 36(1): 132-155.
  • 5Wannamaker P E, Stodt A, Rijo L. Two-dimensional topographic responses in magnetotelluric modeled using finite elements[J]. Geophysics, 1971, 36(7): 2131-2144.
  • 6Pridmore D F, Hohmann G W, Sill W. An investigation of finite element modeling for electrical and electromagnetic data in three dimensions[J]. Geophysics, 1981, 46(5): 1009-1024.
  • 7Vogel G L. Multigrid reconditioned conjugate gradient method for large-scale wave-front reconstruction[J]. Journal of the Optical Society of America, 2002, 19(9): 1817-1822.
  • 8Van D, Vorst H. Iterative solution methods for certain sparse linear systems with a nonsymmetric matrix arising from PDE-problems[J]. Journal of Computational Physics, 1981, 44(1): 1-19.
  • 9Van D, Vorst H. Bi-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems[J]. SIAM Journal on Computing, 1992, 13(2): 631-644.
  • 10Vuduc Wilson.Automatic Performance of Sparse Matrix Kernels[D].Berkeley,CA:University of California,2003.

共引文献63

同被引文献35

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部