期刊文献+

基于遗传算法优化的OCSVM双轮廓模型异常检测算法 被引量:22

Anomaly detection algorithm based on OCSVM double contour model of genetic algorithm optimization for industrial control system
下载PDF
导出
摘要 针对Modbus工业总线协议的特殊性及工控数据样本的不均衡性,利用单类支持向量机(OCSVM)分别构建正常OCSVM模型和异常OCSVM模型,即双轮廓模态来模拟系统通信的正常模式和异常模式,从而实现工控系统异常检测。同时将遗传算法优化自变量降维应用于工控网络入侵检测场景,实现对输入自变量的降维压缩处理,防止OCSVM模型出现过拟合现象及分类准确率低的问题,提高异常检测的精度,缩减建模时间。通过仿真验证了该算法对工控网络异常检测的有效性。 The Modbus industry bus protocol is special,and the network intrusion data sample of industrial control system is not balanced.So this paper used OCSVM to construct double contour model combining normal OCSVM model,and abnormal OCSVM model to simulate the normal mode and abnormal mode of system communication.Then it realized the abnormal detection of industrial control system.In order to prevent the OCSVM model from overfitting and the low accuracy of classification,this paper applied the genetic algorithm to the industrial control network by optimizing the dimensionality reduction of the independent variable.This method improved the accuracy of the anomaly detection and reduced the modeling time.Simulation results show that the proposed algorithm is effective for anomaly detection of industrial network.
作者 闫腾飞 尚文利 赵剑明 乔枫 曾鹏 Yan Tengfei;Shang Wenli;Zhao Jianming;Qiao Feng;Zeng Peng(Faculty of Information&Control Engineering,Shenyang Jianzhu University,Shenyang 110168,China;Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110016,China;Key Laboratory of Networked Control Systems,Chinese Academy of Sciences,Shenyang 110016,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《计算机应用研究》 CSCD 北大核心 2019年第11期3361-3364,共4页 Application Research of Computers
基金 国家重点研发计划项目(2018YFB2004200) 中科院战略性先导科技专项项目(XDC02020200) 国家自然科学基金面上项目(61773368) 预研基金资助项目(614024201011 6Zk63001)
关键词 工业控制系统 异常检测 遗传算法 单类支持向量机 双轮廓模态 industrial control system anomaly detection genetic algorithm one-class support vector machine(OCSVM) double contour model
  • 相关文献

参考文献5

二级参考文献36

  • 1陈秀真,郑庆华,管晓宏,林晨光.层次化网络安全威胁态势量化评估方法[J].软件学报,2006,17(4):885-897. 被引量:342
  • 2李庆华,赵峰.一种面向容侵系统的并行错误检测方法——PBL方法[J].计算机研究与发展,2006,43(8):1411-1416. 被引量:3
  • 3任伟,蒋兴浩,孙锬锋.基于RBF神经网络的网络安全态势预测方法[J].计算机工程与应用,2006,42(31):136-138. 被引量:71
  • 4张翔,胡昌振,刘胜航,唐成华.基于支持向量机的网络攻击态势预测技术研究[J].计算机工程,2007,33(11):10-12. 被引量:37
  • 5]LAURENT BLAIN, YVES DESWARTE. An Intrusion-Tolerant Security Server for an Open Distributed System [ C ] //Euro- pean Symposium on Research in Computer Security. Toulouse, France: [ s. n. ] , 2004: 97-104.
  • 6PAULO SOUSA, ALYSSON NEVES BESSANI, MIGUEL CORREIA, et al. Resilient Intrusion Tolerance through Proactiveand Reactive Recovery [ C ] JJ Proceedings of the 13th IEEE Pacific International Symposium on Dependable Computing. Washington, DC, USA: IEEE Computer Society, 2007 : 373-380.
  • 7I STROUD R, WELCH I, WARNE J, et al. A Qualitative Analysis of the Intrusion-Tolerance Capabilities of the MAFTIA Ar- chitecture [ C] //International Conference on Dependable Systems and Networks. Washington, DC, USA: IEEE Computer Society, 2004 : 453-461.
  • 8CUKIER M, LYONS J, RAMASAMY H V, et al. Providing Intrusion Tolerance with ITUA [C] //Fast Abstract in Supple- ment of the 2001 International Conference on Dependable System and Networks. Goteborg, Sweden: [ s. n. ~, 2001 : 64-65.
  • 9]WANG Fei-yi, UPPPALLI R. SITAR: A Scalable Intrusion-Tolerant Architecture for Distributed Services [ C] //Proceedings of the 2001 IEEE Workshop on Information Assurance and Security. NY, USA: US Military Academy, 2001 : 38-45.
  • 10MALKIN M, WU T, BONEH D. Building Intrusion Tolerance Applications [ C] //Proceedings of the 8th USENIX Security Symposium. Berkeley, CA, USA: Is. n. ], 1999: 79-91.

共引文献73

同被引文献235

引证文献22

二级引证文献97

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部