期刊文献+

基于生物地理优化算法的BIPV多目标规划

Multi-objective BIPV Planning Based on Biogeography-based Optimization Algorithm
下载PDF
导出
摘要 本文针对城市光伏建筑一体化(BIPV)接入城市配电网的优化规划问题,建立了以光伏发电(PV)投资的动态回收年限最小和光伏发电接入后配电系统的静态电压稳定性最好为目标的多目标优化规划模型。将NSGA-Ⅱ中的快速非支配排序策略与精英保留策略引入生物地理算法,形成多目标生物地理算法(MOBBO),并用此算法求解PV接入城市配电网的位置及容量的Pareto最优解集。最后以IEEE33节点配电系统为例进行PV的多目标优化规划,并将优化结果与NSGA-Ⅱ算法进行比较,结果表明多目标生物地理算法具有更好的收敛性能和寻优能力,最后的优化结果大大增加了PV优化配置的灵活性和科学性。 In allusion to the optimal planning problem of building integrated photovoltaic(BIPV)in the distribution network,a multi-objective,in which the minimization of dynamic payback period as well as optimal stability of steady state voltage are token as objectives,is built.The optimal Pareto solution set of network-connecting positions and configured capacity of PV are solved by multiobjective biogeography-based optimization algorithm(MOBBO),which is formed by putting rapid non-dominated sorting strategy and elitism strategy of NSGA-Ⅱalgorithm into biogeography-based optimization algorithm.Finally,taking testing system of IEEE33 node distribution network as an example to proceed multi-objective optimal planning of PV.The proposed algorithm has better global convergence and searching capability compared to the results obtained with the NSGA-Ⅱalgorithm.The final optimal results increased the flexibility and scientificity of the optimized configuration of PV.
作者 程蒙 赵双芝 韩雪龙 杨永前 CHENG Meng;ZHAO Shuangzhi;HAN Xuelong;YANG Yongqian(State Grid Jiangsu Electric Power Engineering Consulting Co.,Ltd.,Nanjing 210008,China;Jiangsu Frontier Electric Technology Co.,Ltd.,Nanjing 211102,China;Quzhou University,Quzhou 324000,China)
出处 《现代信息科技》 2019年第17期29-33,共5页 Modern Information Technology
关键词 NSGA-Ⅱ 生物地理算法 BIPV 动态回收年限 PARETO最优解 NSGA-Ⅱ biogeography-based algorithm BIPV dynamic recovery period Pareto optimal solution
  • 相关文献

参考文献10

二级参考文献148

共引文献394

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部