期刊文献+

计算机视觉在人脸识别领域中的应用研究

Application of Computer Vision in Face Recognition
下载PDF
导出
摘要 随着人工智能的发展,需要自动人脸识别的场景会越来越多,采用计算机视觉快速准确地检测并识别出目标人脸成为必然趋势。使用摄像头采集到的人脸图像,通过灰度化的方法进行预处理,经过预处理后的图像更容易进行特征提取。该方法能够快速检测到人脸,有效提取人脸面目特征,并且准确识别出相应的人脸,主要应用在静态图像的人脸识别中,基本上满足了人脸检测和识别的实时性要求,应用前景广阔。 With the development of artificial intelligence,more and more scenes need automatic face recognition.It is an inevitable trend to use computer vision to detect and recognize the target face quickly and accurately.The face image collected by camera is preprocessed by grayscale method,and the image after preprocessing is easier to extract features.This method can detect the face quickly,extract the face features effectively,and recognize the corresponding face accurately.It is mainly used in the face recognition of static image,which basically meets the real-time requirements of face detection and recognition,and has a broad application prospect.
作者 梁博 Liang Bo(College of Electronic and Electrical Engineering,Baoji University of Arts and Sciences,Baoji Shaanxi 721016,China)
出处 《信息与电脑》 2019年第20期99-101,共3页 Information & Computer
关键词 计算机视觉 人脸识别 Adaboost学习算法 弹性图匹配 computer vision face recognition Adaboost learning algorithm elastic bunch graph matching
  • 相关文献

参考文献1

二级参考文献8

  • 1Poggio T,Girosi F. A Theory of Networks for Approximation and Learning[M].Cambridge,ma:the Mit Press,1989.1140.
  • 2Huang G B,Zhu Q Y,Siew C K. Extreme Learning Machine:A New Learning Scheme of Feedforward Neural Networks[A].2004.985-990.
  • 3Huang G B,Zhu Q Y,Siew C K. Extreme Learning Machine:Theory and Applications[J].Neurocomputing,2006,(1-3):489-501.doi:10.1016/j.neucom.2005.12.126.
  • 4Huang G B,Wang Dianhui,Lan Yuan. Extreme Learning Machines:A Survey[A].2011.
  • 5Hoerl A E,Kennard R W. Ridge regression:Applications to nonorthogonal problems[J].Technometrics,1970,(01):69-82.
  • 6Tibshirani R. Regression Shrinkage and Selection via the Lasso[J].Journal of the Royal Statistical Society,Series B:Statistical Methodology,1996,(01):267-288.
  • 7Perkins S,Lacker K,Theiler J. Grafting:Fast,incremental feature selection by gradient descent in function space[J].Journal of Machine Learning Research,2003.1333-1356.
  • 8邓万宇,郑庆华,陈琳,许学斌.神经网络极速学习方法研究[J].计算机学报,2010,33(2):279-287. 被引量:162

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部