期刊文献+

基于NLPIR的人工智能新闻事件的语义智能分析 被引量:5

Semantic Intelligence Analysis of Artificial Intelligence News Events Based on NLPIR
下载PDF
导出
摘要 为了对人工智能事件进行语义智能分析,以及深入了解人工智能领域的研究内容,笔者通过收集人工智能领域的105个相关新闻,对事件进行新词发现、关键词分析、文本聚类与分类、实体抽取以及情感分析。结果表明,人工智能领域主要研究内容包括“机器人”“深度学习”“区块链”“无人驾驶”“生物医药”“信息安全”“人脸识别”和“产业变革”。在此基础上,笔者结合亚里士多德的“十范畴”和社会信息处理(SIP)理论,清楚地表达了事件环境(背景)是由许多小网络组成的复杂网络,其结构是网状结构;提出融入哲学和环境因素的跨场景的实体抽取框架:“场景=数据+环境”。 In order to carry out semantic intelligence analysis of AI events,and further understand the research content in the field of AI,the author collected 105 related news in the field of AI,and carried out neologism discovery,keyword analysis,text clustering and classification,entity extraction and emotion analysis.The results show that the main research contents of AI include"robot","deep learning","blockchain","driverless","biomedicine","information security","face recognition"and"industrial transformation".On this basis,combining Aristotle's"ten categories"and social information processing(SIP)theory,the author clearly expresses that the event environment(background)is a complex network composed of many small networks,whose structure is a network structure;and proposes a cross scenario entity extraction framework integrating philosophy and environmental factors:"scenario=data+environment".
作者 齐小英 Qi Xiaoying(School of Management,Hebei University,Baoding Hebei 071002,China)
出处 《信息与电脑》 2019年第20期104-107,共4页 Information & Computer
关键词 人工智能 语义分析 事件抽取 NLPIR artificial intelligence semantic analysis event extraction NLPIR
  • 相关文献

参考文献3

二级参考文献38

  • 1本刊评论员.抓紧时机乘胜前进[J].情报理论与实践,1984,7(1):1-2. 被引量:9
  • 2姜吉发.一种事件信息抽取模式获取方法[J].计算机工程,2005,31(15):96-98. 被引量:27
  • 3包昌火,李艳.情报缺失的中国情报学[J].情报学报,2007,26(1):29-34. 被引量:82
  • 4J. Pustejovsky. Events and the Semantics of Opposition in Events as Grammatical Objects [C]//J. Pustejovsky and C. Teiany, Eds. : Stanford: Center for the Study of Language and Information (CSLI Publications), 2000 : 445-482.
  • 5S. Chung, A. Timberlake. Tense, aspect, and mood[J]. Language Typology and Syntactic Description, 1985, 3: 202-258.
  • 6J. Chang,. Event Structure and Argument Linking in Chinese[J]. Language and Linguistics, 2003, 4(2): 317-351.
  • 7J. Makkonen, H. Ahonen-Myka, M. Salmenkivi. Simple Semantics in Topic Detection and Tracking [J]. Information Retrieval, 2004: 347-368.
  • 8W. Zhou, Z.T. Liu. Event-based Knowledge Acquisition for Ontology Learning [C]//Proceedings of The 6th IEEE International Conference on Cognitive Information (ICCI'07), Lake Tahoe, California, USA, 2007 : 498-501.
  • 9E. Filatova, V. Hatzivassiloglou. Domain-independent detection, extraction, and labeling of atomic events [C]//Proceedings of RANLP, Borovetz, Bulgaria, 2003 : 145-152.
  • 10D. Sanchez, A. Moreno. A methodology for knowledge acquisition from the web[J].International Journal of Knowledge-Based and Intelligent Engineering Systems, 2006, 10: 453-475.

共引文献168

同被引文献38

引证文献5

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部