期刊文献+

声爆研究的现状与挑战 被引量:19

Progress and challenges of sonic boom research
下载PDF
导出
摘要 声爆是超声速飞行器所特有的一种气动声学现象,其涉及空气动力学和非线性声学等研究领域,开展相关研究具有重要的学术意义和应用前景。本文简述了声爆的基本概念、主要特征和主要危害,简要回顾了声爆的产生、发展和演化的研究历史,重点介绍了声爆的数值模拟、风洞试验和飞行试验预测方法,以及近年来提出的声爆抑制方法和低声爆气动优化设计方法的发展现状;最后总结了当前声爆预测方法面临的技术难点和挑战。 Sonic boom is a special aero-acoustic phenomenon for supersonic aircraft,which contains both the fields of aerodynamics and nonlinear acoustics,so it is of important academic significance and application prospect.The present paper introduces its basic conception and major characteristics,the research history of its generation,development and evolution,and its harmfulness;Then the numerical simulation method,wind tunnel experiment method and flight test method of sonic boom researches are emphatically presented,and also including the recently proposed sonic boom inhibition and low boom optimization design methods;Finally,the current technique difficulties and challenges of sonic boom prediction are summarized.
作者 钱战森 韩忠华 QIAN Zhansen;HAN Zhonghua(AVIC Aerodynamics Research Institute,Shenyang 110034,China;Aviation Key Laboratory of Science and Technology on High Speed and High Reynolds Number Aerodynamic Force Research,Shenyang 110034,China;Research Center for Supersonic Transport,School of Aeronautics,Northwestern Polytechnical University,Xi’an 710071,China;Institute of Aerodynamic and Multidisciplinary Design Optimization,School of Aeronautics,Northwestern Polytechnical University,Xi’an 710071,China)
出处 《空气动力学学报》 CSCD 北大核心 2019年第4期601-619,I0005,共20页 Acta Aerodynamica Sinica
基金 国家自然科学基金项目(11672280,11772261)
关键词 声爆 数值模拟 风洞试验 空间压力 声爆危害 声爆抑制 低声爆设计 sonic boom numerical prediction wind tunnel test spatial pressure harmfulness of sonic boom inhibition of sonic boom low boom design
  • 相关文献

参考文献9

二级参考文献156

  • 1Meredith K B,Dahlin J A,Graham D H, et al. Computational fluid dynamics comparison and flight test measure ment of F-5E off-body pressures [R]. AIAA Paper 2005- 0006,2005.
  • 2Hamilton M F, Blackstock D T. Nonlinear acoustics[M]. San Diego, USA: Academic Press, 1998.
  • 3Stanescu D, Hahashi W G. 2N-storage low dissipation and low-dispersion Runge-Kutta for computational acoustics[J].Journal of Computational Physics, 1998,143 : 674-681.
  • 4Khokhlova V A, Souchon R, Tavakkoli J, et al. Numerical modeling of finite-amplitude sound beams: shock formation in the near field of a cw plane piston source [J]. Journal of Acoustical Society of America, 2001, 110 (1): 95-108.
  • 5Maglieri D J, Plotkin K J. Sonic boom, chapter 10, aeroacoustics of flight vehicles[R]. NASA RP-1258,1991, 1: 519-561.
  • 6Whitham G B. The flow pattern of a supersonic projectile [J]. Communications on Pure and Applied Mathematics, 1952,5:301-348.
  • 7Seebass R. Sonic boom theory [J]. Journal of Aircraft, 1969,6 : 177-184.
  • 8Cleveland R O,Chambers J P,Bass H E et al. Comparison of computer codes for the propagation of sonic boom waveforms through isothermal atmospheres[J]. Journal of Acoustical Society of America, 1996,100 (5) : 3017-3027.
  • 9Carlson H W. An investigation of some aspects of the sonic boom by means of wind tunnel measurements of pressures about several bodies at a Mach number of 2.01 [R]. NASA TN D-161,1959.
  • 10Rosendale J V. Floating shock fitting via Lagrangian adaptive meshes[R]. NASA CR-194997,1994.

共引文献84

同被引文献71

引证文献19

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部