期刊文献+

油性金属-半导体异质结构可见光催化特性及在水处理中的应用研究 被引量:1

Visible Light Catalysis and Application in Water Treatment Using Oil Soluble Metal-Semiconductor Composite Nanostructures
下载PDF
导出
摘要 利用金属等离激元热电子效应,使突破半导体带隙宽度限制的可见光催化成为可能,是有机污染物处理方面的新兴方向。首先制备了油性Ag-TiO 2纳米棒异质结构,研究了其光谱特性及催化过程中热电子转换机制,验证了在可见光下对水中有机染料的高效催化分解能力。结果表明,相比于TiO 2纳米棒,Ag-TiO 2纳米棒异质结构展现出显著的催化能力,罗丹明B的分解速率提高了近三倍。这种催化材料高效、环保,在水中不残留,在水处理等领域具有广泛的应用前景。 The effect of plasmon-induced hot-electron transfer enables the possibility of applying semiconductors with wide band gap to visible light catalysis,which becomes an emerging research direction in organic pollutants treatment.Here oil soluble Ag-TiO 2 nanorod composites were prepared.Their optical spectral response range and relative hot-electron transport mechanism in catalytic process were studied.Their visible light catalytic ability in water was experimentally investigated.The experimental result showed that the photocatalytic ability of Ag-TiO 2 composite nanostructures was much more notable compared with TiO 2 nanorod.The decomposition rate of Rhodamine B was increased up to nearly three times by the assist of Ag-TiO 2 composite nanostructures.No residue in water,high efficiency and environment-friendly properties make this photocatalyst suitable for water treatment application.
作者 赵临风 王善江 张晓阳 赵明虎 纪愚 赵宁 张彤 ZHAO Linfeng;WANG shanjiang;ZHANG Xiaoyang;ZHAO Minghu;JI Yu;ZHAO Ning;ZHANG Tong(School of Electronic Science and Engineering,Southeast University,Nanjing 210096,China;Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology,Suzhou Research Institute of Southeast University,Suzhou Jiangsu 215123,China)
出处 《电子器件》 CAS 北大核心 2019年第5期1325-1329,1343,共6页 Chinese Journal of Electron Devices
基金 国家级大学生创新创业训练计划项目(201710286040) 国家自然基金面上项目(61875241)
关键词 纳米光电材料 表面等离激元 可见光催化 异质结构 热电子 nano optoelectronic material surface plasmon visible light catalysis heterogeneous structure hot-electron
  • 相关文献

参考文献2

二级参考文献17

共引文献8

同被引文献15

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部