摘要
跨摄像机行人因光照、视角、姿态的差异,会使其外观变化显著,给行人再识别的研究带来严峻挑战。文中提出基于深度学习和度量学习的行人再识别方法。首先采用手工特征和深度特征融合网络FFN提取行人图像特征,然后将核矩阵应用于KISSME距离度量学习中,获取更优的距离度量模型。在具有挑战的VIPeR和PRID450S两个公开数据集上进行仿真实验,实验结果表明所提出的行人再识别算法的有效性。
Pedestrian may vary greatly in appearance due to differences in illumination,viewpoint,and poses across cameras,which can bring serious challenges in person re-identification.A deep learning and metric learning based algorithm is proposed for person re-identification in this paper.Features of human images are first extracted by a feature fusion net(FFN)composed of handcraft features and deep features,and then a kernel matrix is applied to KISSME distance metric learning to obtain a better distance metric model.Experimental results have shown that the proposed algorithm effectively improves recognition rates on two challenging datasets(VIPeR,PRID450s).
作者
侯丽
刘琦
HOU Li;LIU Qi(School of Information Engineering,Huangshan University,Huangshan Anhui 245041,China)
出处
《科技视界》
2019年第29期112-113,28,共3页
Science & Technology Vision
基金
安徽省自然科学基金面上项目(1908085MF178)
安徽省高校优秀青年人才支持计划重点项目(gxyqZD2019069)
关键词
行人再识别
特征融合网络
深度学习
距离度量学习
Person re-identification
Feature fusion net
Deep learning
Distance metric learning