期刊文献+

基于3D多尺度特征融合残差网络的高光谱图像分类 被引量:10

Hyperspectral Image Classification Based on 3D Multi-scale Feature Fusion Residual Network
下载PDF
导出
摘要 深度学习中用于训练的高光谱图像(HSI)数据十分有限,因此较深的网络不利于空谱特征的提取.为了缓解该问题,文中提出3D多尺度特征融合残差网络,利用深度学习和多尺度特征融合的方式对光谱-空间特征进行有序的学习.首先对3D-HSI数据进行自适应降维,将降维后的图像作为网络输入.然后,通过多尺度特征融合残差块依次提取光谱-空间特征,融合不同尺度的特征,通过特征共享增强信息流,获得更丰富的特征.最后以端到端的方式训练网络.在相关数据集上的测试表明,文中网络具有良好的分类性能. Hyperspectral image(HSI)data used for training in deep learning are insufficient,and therefore deeper network is unfavorable for spectral-spatial feature extraction.To solve this problem,a 3D multi-scale feature fusion residual network is proposed.Spectral-spatial features are learned by deep learning and multi-scale feature fusion.Firstly,the dimension of 3D-HSI data is adaptively reduced,and the images after dimensionality reduction are used as the input of the network.Secondly,spectral-spatial features are extracted successively through multi-scale feature fusion residual blocks and features of different scales are fused.The information flow is enhanced through sharing features and richer features are obtained.Finally,the network is trained end-to-end and tested on corresponding datasets.Experimental results show the satisfactory classification performance of the proposed network.
作者 郭文慧 曹飞龙 GUO Wenhui;CAO Feilong(Department of Applied Mathematics,College of Sciences,China Jiliang University,Hangzhou 310018)
出处 《模式识别与人工智能》 EI CSCD 北大核心 2019年第10期882-891,共10页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61672477)资助~~
关键词 深度学习 多尺度特征融合 特征提取 高光谱图像分类 Deep Learning Multi-scale Feature Fusion Feature Extraction Hyperspectral Image Classification
  • 相关文献

参考文献2

二级参考文献28

  • 1陈彬,洪家荣,王亚东.最优特征子集选择问题[J].计算机学报,1997,20(2):133-138. 被引量:96
  • 2董超.高光谱遥感影像监督分类算法关键技术研究.博士学位论文.北京:北京航空航天大学,2010.
  • 3Theiler J, Scovel C, Wohlberg B, et al. Elliptically Contoured Distri- butions for Anomalous Change Detection in Hyperspectral Imagery. IEEE Geoscience and Remote Sensing Letters, 2010, 7 (2) : 271- 275.
  • 4Cristianin| N, Shawe-Taylor J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge, UK: Cambridge University Press, 2000.
  • 5Tso B, Mather P M. Classification Methods for Remotely Sensed Data. Boca Raton, USA: CRC Press, 2001.
  • 6Fauvel M, Benediktsson J A, Chanussot J, et al. Spectral and Spatial Classification of Hyperspectral Data Using SVMs and Morphological Profiles. IEEE Trans on Geoscience and Remote Sensing, 2008, 46( 11) : 3804-3814.
  • 7Rottensteiner F, Trinder J, Clode S, et al, Using the DempsterShafer Method for the Fusion of LIDAR Data and Multi-Spectral Images for Building Detection. Information Fusion, 2005, 6 ( 4 ) : 283-300.
  • 8Bartels M, Wei H. Rule-Based Improvement of Maximum Likelihood Classified LIDAR Data Fused with Co-registered Bands / / Proc of the Annual Conference of the Remote Sensing and Photogrammetry Society. Cambridge, UK, 2006. DOl: 10. 1. 1. 66. 3166.
  • 9Cao Y, Wei H, Zhao H J. Optimization Algorithms in FMRF Model-Based Segmentation for LIDAR Data and Co-registered Bands / / Proc of the 5th IAPR Workshop on Pattern Recognition Remote Sensing. Tampa, USA, 2008: 1-4.
  • 10Szeliskl R, Zabih R, Scharstein D, et al, A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors. IEEE Trans on Pattern Analysis and Machine Intelligence, 2008, 30 ( 6) : 1068 -1080.

共引文献11

同被引文献121

引证文献10

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部