期刊文献+

桥式起重机主梁自适应多目标动态优化 被引量:4

Adaptive Multi-Objective Dynamic Optimization of the Main Beam of Bridge Crane
下载PDF
导出
摘要 以通用型双梁桥式起重机为对象,对主梁进行结构优化设计,采用一种新的将Kriging响应面与多目标遗传算法相结合的优化方法,相比一般多目标遗传算法,计算成本更低,能更加快速地找到第一个Pareto前端解。考虑了结构动态性能,即主梁结构的垂直自振频率应尽量较低;简化双梁结构,以单个梁结构为分析对象,提高了计算效率。优化后的起重机相比原始设计质量减轻了7.61%,垂直自振频率为5.96Hz,最大应力98.15Mpa,增大了13.54%,最大变形36.38mm,增加了4.55%,满足了静刚度和强度条件,说明优化是有效的。 Inthis paper,a new method which is combining Kriging response surface with multi-objective genetic algorithm was used to optimize the structure of the main beam of double-beam bridge crane.Compared with the general multi-objective genetic algorithm,the computing cost is lower and the first Pareto front end can be quickly found.Considering the dynamic performance of the structure,the vertical vibration frequency of the main beam structure should be as low as possible.Simplifying the double beam structure and using the single beam structure as the analysis object can improve the calculation efficiency.Compared with the original structure,the quality of optimized design is reducedby 7.61%,the vertical natural frequency is 5.96Hz,the maximum stress is 98.15MPa,increased by 13.54%,the maximum deformation is 36.38mm,increased by 4.55%,whichcan satisfy the static stiffness and strength conditions,provethat the optimization is effective.
作者 邱悦 易朋兴 聂福全 马德杨 QIU Yue;YI Peng-xing;NIE Fu-quan;MA De-yang(School of Mechanical Science&Engineering,Huazhong University of Science and Technology,Hubei Wuhan430074,China;He’nan Weihua Heavy Machinery Co.,Ltd.,He’nan Changyuan453400,China)
出处 《机械设计与制造》 北大核心 2019年第11期204-208,共5页 Machinery Design & Manufacture
基金 国家科技支撑计划《桥式起重机轻量化关键技术研究与应用》课题资助(2015BAF06B00)
关键词 主梁 动态优化 克里金响应面 多目标遗传算法 Main Beam Dynamic Optimize Kriging Response Surface Multi-Objective Genetic Algorithm
  • 相关文献

参考文献5

二级参考文献29

  • 1陈国初,俞金寿.微粒群优化算法[J].信息与控制,2005,34(3):318-324. 被引量:59
  • 2吕震宙,孙颉,徐友良.机械结构系统模糊可靠性分析的数字计算方法[J].机械工程学报,2005,41(9):19-23. 被引量:20
  • 3马景槐,王江涛.用混合遗传算法优化起重机主梁[J].起重运输机械,2006(1):16-18. 被引量:4
  • 4Kennedy 3, Eberhart R C. Particle swarm optimization [A]. Proceeding of 1995 IEEE International Conference on Neural Networks [C]. New York, NY, USA: IEEE, 1995.1942-1948.
  • 5Eberhart R C, Kennedy J. A new optimizer using particle swarm theory [A]. Proceedings of the Sixth International Symposium on Micro Machine and Human Science [C]. New York, NY, USA: IEEE, 1995.39-43.
  • 6刘惟信 孟嗣宗.机械最优化设计[M].北京:清华大学出版社,1986..
  • 7张保成,苏铁熊,张林仙内燃机动力学[M].北京:国防工业出版社,2009:86-87.
  • 8Mourelatos ZP.An analytical investigation of the crankshaft flywheel bending vibrations for a V6 engine[ J ].SAE Paper, 1995,33 ( 5 ): 65-67.
  • 9SHU Ge-quii,LIANG Xingyu.Axial high Speed automotive engine crankshaft [ J ] .International of Vehicle Design, 2007: 251-253.
  • 10徐格宁,惠忠文.基于组合策略的桥式起重机结构优化设计方法[J].太原科技大学学报,2009,30(1):54-58. 被引量:8

共引文献95

同被引文献18

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部