摘要
在辅助决策系统中,传统的关系型数据库已经难以满足对海量日志数据的管理,非关系型数据库的出现,为大规模数据存储挖掘问题提供了卓有成效的解决方案。文章着重分析非关系数据库MongoDB的特点和优势,通过存储和检索算法设计和实际的海量日志数据查询性能仿真,提出将MongoDB数据库应用于辅助决策系统中,有效提高了大规模日志数据存储和分析效率。
In the auxiliary decision-making system,the traditional relational database has been difficult to meet the management of massive log data,the emergence of non-relational database,which provides a fruitful solution for the problem of large-scale data storage mining.This paper focuses on the characteristics and advantages of non-relational database MongoDB.Through the design of storage and retrieval algorithm and the simulation of massive log data query performance,this paper proposes to apply MongoDB database to auxiliary decision-making system.It effectively improves the efficiency of large-scale log data storage and analysis.
出处
《科技创新与应用》
2019年第33期5-8,共4页
Technology Innovation and Application