期刊文献+

大孔树脂MI-BN4固定化β-呋喃果糖苷酶Fru6及催化合成低聚果糖

Immobilization of β-fructofuranosidase Fru6 by macroporous resin MI-BN4 and its application in catalytic synthesis of fructo-oligosaccharides
下载PDF
导出
摘要 为了降低β-呋喃果糖苷酶Fru6使用成本,使β-2,6键型低聚果糖应用到实际中。该试验研究了对Fru6的固定化技术。通过多官能团树脂MI-BN4对Fru6进行固定化,优化了果糖苷酶Fru6固定化条件,并研究固定化酶Fru6酶学性质、固定化酶Fru6催化低聚果糖能力、以及固定化酶Fru6重复使用的能力。在吸附时间6 h,温度25℃,加酶量40 U的条件下进行固定化,可得到酶活力205.7 U/g,酶活回收率95.2%,蛋白吸附量0.6 mg/g干树脂的固定化果糖苷酶。固定化酶Fru6催化合成低聚果糖能力相较于游离酶有所提高,低聚果糖转化率从62%提升到了72%,并且可重复使用12次,低聚果糖产量略有降低。得到了高酶活回收率且催化能力较好的固定化果糖苷酶,为生产6-低聚果糖奠定了基础。 In order to reduce the running cost,immobilization ofβ-fructofuranosidase Fru6 was investigated for fructo-oligosaccharide preparation.Fru6 was immobilized by multi-functional resin MI-BN4 and the immobilization condition was optimized.The enzymatic properties,the ability to catalyze fructo-oligosaccharide and the capacity for reusing immobilized Fru6 were explored.When adsorbed for 6 h at 25°C with 40 U enzyme,an immobilized enzyme with 205.7 U/g activity was obtained,which had 95.2%recovery rate of enzyme activity and absorbed 0.6 mg/g dry resin protein.Compared with free enzyme,the fructo-oligosaccharides conversion rate with immobilized Fru6 increased from 62%to 72%and the yield of fructo-oligosaccharides slightly reduced.Besides,the immobilized Fru6 could be reused for 12 times.Overall,the immobilized Fru6 has high enzyme activity recovery rate and good catalytic ability,which lays a foundation for fructo-oligosaccharides production.
作者 成天童 何冰芳 CHENG Tiantong;HE Bingfang(College of Biological and Pharmaceutical Engineering,Nanjing Tech University,Nanjing 211816,China;College of Pharmaceutical Science,Nanjing Tech University,Nanjing 211816,China)
出处 《食品与发酵工业》 CAS CSCD 北大核心 2019年第20期16-21,共6页 Food and Fermentation Industries
基金 国家自然科学基金(21376119)
关键词 Β-呋喃果糖苷酶 MI-BN4树脂 固定化 多官能团 低聚果糖 β-fructofuranosidase MI-BN4 resin immobilization multi-functional oligofructose
  • 相关文献

参考文献2

二级参考文献24

  • 1罗予,李金陵,蔡访勤.双歧杆菌对大鼠肠道菌群的影响[J].河南医科大学学报,1993,28(1):12-15. 被引量:7
  • 2卢光莹,华子千.生物大分子晶体学基础[M].北京:北京大学出版社.1994:93.
  • 3Tetsuya I, Koki F, Kozo H, et al. Cloning and expression of -fructofuranosidase gene from Arthrobacter sp. K-1[J]. Journal of Applied Glycoscience, 2002, 49(3): 291-296.
  • 4Tonozuka T, Tamaki A, Yokoi G, et al. Crystal structure of a lactosucrose-producing enzyme, Arthrobacter sp. K-1 -fructofuranosidase[J]. Enzyme and Microbial Technology, 2012,51(6/7): 359-365.
  • 5Ozimek LK, Kralj S, van der Maarel MJEC, et al. The levansucrase and inulosucrase enzymes of Lactobacillus reuteri 121 catalyse processive and non-processive transglycosylation reactions[J]. Microbiology, 2006,152(4): 1187-1196.
  • 6Mu WM, Chen QM, Wang X, et al. Current studies on physiological functions and biological production of lactosucrose[J]. Applied Microbiology and Biotechnology, 2013, 97(16): 7073-7080.
  • 7de Vuyst L, Moens F, Selak M, et al. Summer meeting 2013: growth and physiology of bifidobacteria[J]. Journal of Applied Microbiology, 2014, 116(3): 477-491.
  • 8何冰芳,吴薛明,储建林,等.果糖基化葛根素及其制备方法与用途:中国,CN102443027A[P].2012.05.09.http://www.xjishu.com/zhuanli/63719.html.
  • 9何冰芳,王瑞,吴薛明,等.耐有机溶剂糖苷酶Fru6及其突变体和应用:中国,CN102732456A[P].2012.10.17.http://www.aptchina.com/zhuanli/7893604.
  • 10Wu XM, Chu JL, Wu B, et al. An efficient novel glycosylation of flavonoid by - fructosidase resistant to hydrophilic organic solvents[J]. Bioresource Technology, 2013,129: 659-662.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部