期刊文献+

空间相关性约束联合子空间追踪的高光谱图像稀疏解混 被引量:2

Spatial Correlation Constrained Simultaneous Subspace Pursuit for Sparse Unmixing of Hyperspectral Imagery
下载PDF
导出
摘要 通过深入分析高光谱图像空间相邻数据之间的空间相关性,提出一种利用空间相关性进行约束的联合子空间追踪解混(Spatial correlation constrained simultaneous subspace pursuit,SCCSSP)方法。该方法首先基于分块思想将高光谱图像进行分块处理,然后在图像块的端元提取步骤中,结合空间相关性特征对端元的提取进行约束,从而确保当前端元支撑集相对于高光谱图像残差是最优的。在丰度估计中将图像块的端元集合合并作为整幅图像的端元支撑集,通过求解非负性约束的最小二乘法获得丰度重建图像。模拟图像数据实验结果表明,本文方法在同等条件下能够获得更高的信号重构误差,且解混运算时间低于凸优化算法。在实际图像数据实验中,本文方法丰度图像稀疏度最低,取得了仅次于SUnSAL-TV算法的图像重建误差,其所得到的丰度重建图像也取得了更好的视觉效果。实验结果验证了本文方法具有更高的解混精度。 Based on the analyses of the interpixel correlation in the hyperspectral imagery,a spatial correlation constrained simultaneous subspace pursuit(SCCSSP) method is proposed. The method uses a block -processing strategy to divide the whole hyperspectral imagery into several blocks. In each block,the spatial correlation information is added to improve the accuracy of endmember selection,and ensures that the estimated endmember set is optimal to the current hyperspectral image residuals. The endmembers picked in each block is associated as the endmember sets of the whole hyperspectral imagery. Finally,the abundances are estimated by the nonnegative least squares method with the obtained end member sets. The results of simulated images experiment show that the proposed method can obtain higher signal reconstruction error under the same condition,and the time of unmixing operation is lower than the convex optimization algorithms. In the real images experiment,this method has the lowest sparsity of the abundance images,and is second only to the SUnSAL - TV algorithm in image reconstruction error. In addition,the reconstructed images obtained by this method obtain better visual effects. To sum up,experimental results on both simulated images and real images indicate that the hyperspectral unmixing accuracy of the SCCSSP algorithm is higher than that of the traditional methods.
作者 孔繁锵 朱成 徐诚 周永波 KONG Fanqiang;ZHU Cheng;XU Cheng;ZHOU Yongbo(College of Astronautics,Nanjing University of Aeronautics&Astronautics,Nanjing,210016,China;Research Institute of UAV,Nanjing University of Aeronautics&Astronautics,Nanjing,210016,China)
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2019年第5期577-585,共9页 Journal of Nanjing University of Aeronautics & Astronautics
基金 国家自然科学基金(61401200)资助项目
关键词 高光谱图像 高光谱解混 稀疏解混 贪婪算法 多重测量向量 hyperspectral imagery hyperspectral unmixing sparse unmixing greedy algorithm multiple-measurement vector
  • 相关文献

参考文献3

二级参考文献33

  • 1Craig M D. Minimum Volume Transforms for Remotely Sensed Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32:542-552.
  • 2Boardman J W, Kruse F A, Green R O. Mapping Target Signatures via Partial Unmixing of AVIRIS Data: in Summaries[C]. The Fifth JPL Airborne :Earth Science Workshop, USA, 1995.
  • 3Winter M E. Fast Autonomous Spectral End-member Determination in Hyperspectral Data[C]. The Thirteenth International Conference on Applied Geologic Remote Sensing, Vancouver, 1999.
  • 4Nascimento J M P, Bioucas-Dias J M. Vertex Component Analysis: a Fast Algorithm To Unmix Hy- perspeetral Data[J]. IEEE Transactions on Geoseience and Remote Sensing, 2005,43(4): 898-910.
  • 5Chang C, Wu Chaocheng, Liu Weimin, et al. A New Growing Method for SimplemBased Endmem- her Extraction Algorithm[J].IEEE Transactions on Geoscienee and Remote Sensing, 2006, 44 (10) : 2 804-2 819.
  • 6Miao L, Qi Hairong. Endmember Extraction from Highly Mixed Data Using Minimum Volume Con- strained Nonnegative Matrix Factorization [J ]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(3):765-777.
  • 7Bioucas-Dias J M. A Variable Splitting Augmented Lagrangian Approach to Linear Spectral Unmixing [C]. IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Grenoble, France, 2009.
  • 8Green A, Berman M, Switzer P, et al. A Transformation for Ordering Multispectral Data in Terms of Image Quality with Implications for Noise Removal [J].IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(1): 65-74.
  • 9Boyd S, Vandenberghe L. Convex Optimization [M]. UK: Cambridge University Press, 2004.
  • 10Bro R, Jong S. A Fast Nonnegativity-Constrained Least Squares Algorithm[J]. Journal of Chemomettics, 1997,11(5): 393-401.

共引文献23

同被引文献14

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部