期刊文献+

功耗分析攻击中机器学习模型选择研究 被引量:2

Research on Model Selection of Machine Learning in Power Analysis Attack
下载PDF
导出
摘要 根据密码芯片功耗曲线的特性,对支持向量机、随机森林、K最近邻、朴素贝叶斯4种机器学习算法进行分析研究,从中选择用于功耗分析攻击的最优算法。对于机器学习算法的数据选取问题,使用多组数量相同但组成元素不同的数据集的十折交叉验证结果进行模型选择,提高测试公平性及测试结果的泛化能力。为避免十折交叉验证过程中出现测试集误差不足以近似泛化误差的问题,采用Friedman检验及Nemenyi后续检验相结合的方法对4种机器学习算法进行评估,结果表明支持向量机是适用于功耗分析攻击的最优机器学习算法。 According to the characteristics of the power curve of crypto chips,four kinds of machine learning algorithms including Support Vector Machine(SVM),Random Forest(RF),K-Nearest Neighbor(KNN)and Naive Bayes(NB)are analyzed and studied,and the optimal algorithm for power analysis attack is selected.For the data selection problem of the machine learning algorithm,the 10-fold cross-validation results of multiple sets of data sets with the same number but different constituent elements are used to select the model,which improves the test fairness and the generalization ability of the test results.In order to avoid the problem that the test set error is not enough to approximate the generalization error during the 10-fold cross-validation process,the four kinds of machine learning algorithms are evaluated by the combination of Friedman test and Nemenyi post-hoc test.The results show that the SVM is the optimal machine learning algorithm for power analysis attack.
作者 段晓毅 陈东 高献伟 范晓红 周玉坤 DUAN Xiaoyi;CHEN Dong;GAO Xianwei;FAN Xiaohong;ZHOU Yukun(Department of Electronics and Information Engineering,Beijing Electronic Science and Technology Institute,Beijing 100070,China)
出处 《计算机工程》 CAS CSCD 北大核心 2019年第11期144-151,158,共9页 Computer Engineering
基金 国家自然科学基金(61701008) 中央高校基本科研业务费专项资金(2017LG05)
关键词 机器学习 十折交叉验证 Friedman检验 Nemenyi后续检验 功耗分析攻击 machine learning 10-fold cross-validation Friedman test Nemenyi post-hoc test power analysis attack
  • 相关文献

参考文献5

二级参考文献44

  • 1李宏明.基于多元统计分析的地方高校课堂教学质量评价——以台州学院为例[J].台州学院学报,2010,32(3):77-80. 被引量:4
  • 2肖政宏,王家廞.基于PCA和GMM的图像分类算法[J].计算机工程与设计,2006,27(11):1951-1953. 被引量:5
  • 3何国辉,甘俊英.PCA-LDA算法在性别鉴别中的应用[J].计算机工程,2006,32(19):208-210. 被引量:19
  • 4Nielsen M A, Chuang I L. Quantum computation and quantum information[M]. Cambridge University Press, Cambridge, 2000.
  • 5Vedral V, Plenio M B. Basics of quantum computation[J]. Rep. Prog. Quantum Electron. , 1998:22.
  • 6Shot P W. Algorithms for quantum computation: discrete log arithms and factoring[C].Proc. 35^th Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press, LosAlamitos, CA, 1994:124-134.
  • 7Shor P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[J]. SIAM J. Comp., 1997, 26:1484-1509.
  • 8Grover Lov K. Quantum mechanics helps in searching for a nee die in a haystack[J]. Phys. Rev. Lett., 1997, 79: 325-328.
  • 9Brassard G, Hoyer P, Tapp A. Quantum Counting[C].Proceedings of the 25^th International Colloquium on Automata, Language, and Programming: ICALP, Lecture Notes in Computer Science, Springer, Berlin, 1998, 1443: 820.
  • 10Mitchell T. Machine Learning[M]. McGraw Hill, 1997.

共引文献333

同被引文献19

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部