期刊文献+

基于全电介质复合纳米天线荧光传感器的研究 被引量:1

Research on Fluorescence Sensor Based on All-Dielectric Hybrid Nano-Antenna
下载PDF
导出
摘要 为了增强量子点的定向发光强度,提出了一种由硅柱二聚体和二氧化钛圆盘组成的复合纳米天线结构。利用时域有限差分方法系统研究了硅柱二聚体的轴参数、截面类型以及复合纳米天线结构对量子点定向发光增强的影响。结果表明,对于中心波长为600nm的量子点,硅柱二聚体的轴参数对量子点的发光影响不大,椭圆形截面的硅柱二聚体可以实现较大的量子点发光增强。此外,在复合纳米天线的作用下,不仅可以获得较大的量子效率增强,还可以实现量子点高度定向的发射效果,量子效率增强约6倍,定向收集效率可以达到50%。 In order to enhance the directional luminescence intensity of quantum dots,a hybrid nano-antenna structure composed of a silicon column dimer and a titania dioxide disk was proposed.The effects of the axis parameters,profile type of silicon column dimer and hybrid nano-antenna structure on the directional emission enhancement of quantum dot were investigated by using the finite difference time domain method.The results show that the silicon column dimer with different axial parameters has little effect on quantum dot emission at the central wavelength of 600 nm,and silicon column dimer with elliptical profile can achieve larger quantum dot luminescence enhancement.In addition,under the effect of hybrid nano-antenna,both the quantum efficiency enhancement and the highly-directional emission effect of quantum dot can be achieved,and the former is enhanced by about 6 times and the directional collection efficiency can reach 50%.
作者 全宏升 曹文静 陈智辉 QUAN Hongsheng;CAO Wenjing;CHEN Zhihui(Key Lab.of Advanced Transducer and Intelligent Control System of the Ministry of Education and Shanxi Province;College of Phys.and Optoelectron.,Taiyuan University of Technol.,Taiyuan 030024,CHN)
出处 《半导体光电》 CAS 北大核心 2019年第5期631-636,共6页 Semiconductor Optoelectronics
基金 国家自然科学基金项目(11674239,61307069)
关键词 荧光传感器 硅柱二聚体 二氧化钛圆盘 定向发射 fluorescence sensor silicon column dimer TiO2disk directional emission
  • 相关文献

参考文献2

二级参考文献42

  • 1Hadfield R H. Single-photon detectors for optical quantum information applications [ J ]. Nature Photonics, 2009,3 (12) : 696-705.
  • 2GisinN, Ribordy G, Tittel W, et al. Quantum cryptography[J]. Rev. Modern Physics, 2002,74 ( 1 ) : 145-195.
  • 3(YBrien J L. Optical quantum computing[J]. Science, 2007,318(5856) : 1567-1570.
  • 4Stefanov A, Gisin N, Guinnard O, et al. Optical quantum random number generator [J]. J. Modern Optics, 2000,47 (4) : 595-598.
  • 5Isoshima T,Isojima Y, Hakomori K, et al. Ultrahigh sensitivity single-photon detector using a Si avalanche photodiode for the measurement of ultraweak biochemilumineseence[J]. Rev. Scientific Instruments, 1995,66 (4) :2922.
  • 6Lieberwirth U,Arden-Jacob J, Drexhage K H, et al. Multiplex dye DNA sequencing in capillary gel electrophoresis by diode laser-based time-resolved fluorescence detection[J]. Analytical Chemistry, 1998, 70(22) :4771-4779.
  • 7Pifferi A, Torricelli A, Spinelli L, et al. Time- resolved diffuse reflectance using small source-detectorseparation and fast single-photon gating[J]. Physical Rev. Lett. ,2008,100(13) :138101.
  • 8Kume H,Koyama K, Nakatsugawa K, et al. Ultrafast microchannel plate photomultipliers[J]. Appl. Opt., 1988,27(6) :1170.
  • 9Hemmati H, Hemmati H, Birnbaum K M, et al. Combined laser communications and laser ranging transponder for Moon and Mars [J]. Proc. SHE, 2009,7199 : 71990N-71990N-12.
  • 10Bay Z. Electron multiplier as an electron-counting device[J] Nature, 1938, 141(284): 1011.

共引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部