期刊文献+

SiN_x/SiO_xN_y叠层结构防潮能力的研究

Research on Moisture Barrier Property of SiN_x/SiO_xN_y Stacks Structure
下载PDF
导出
摘要 研究了等离子体增强化学气相沉积(PECVD)工艺参数对SiNx及SiOxNy防潮能力的影响,并测试了SiNx/SiOxNy叠层薄膜的水汽渗透速率(WVTR)。实验结果表明:单层SiNx薄膜和SiOxNy薄膜都存在临界厚度,当膜厚大于临界值时,继续增大厚度不会明显改善薄膜的WVTR。当沉积温度从50℃提高到250℃,SiNx薄膜的WVTR从0.031g/(m^2·day)降至0.010g/(m^2·day)。SiOxNy沉积时,增大N2O通入量对薄膜的WVTR影响不明显,但可以有效改善薄膜的弯曲性能。最后,4个SiNx/SiOxNy叠层膜的WVTR下降到了4.4×10^-4 g/(m^2·day)。叠层膜防潮能力的显著提升归因于叠层结构可以有效解耦层与层之间的缺陷,延长水汽渗透路径。 The influences of process parameters on the moisture barrier properties of SiNx and SiOxNy prepared by plasma enhanced chemical vapor deposition(PECVD)were investigated,and the water vapor permeation rate(WVTR)of SiNx/SiOxNy stacks film was tested.The results show that both the single-layer SiNxfilm and the SiOxNy film have a critical thickness.When the film thickness is greater than the critical value,increasing the thickness does not significantly improve the WVTR of the film.When the deposition temperature increased from50℃ to 250 ℃,the WVTR of the SiNxfilm decreased from 0.031 g/(m^2· day)to0.010 g/(m^2·day).When SiOxNy is deposited,increasing the N2 O flux does not affect the WVTR of the film,but it can effectively improve the bending properties of the film.Finally,the WVTR of the four stacks SiNx/SiOxNy films fell to 4.4×10^-4 g/(m^2·day).The significant improvement in moisture barrier capacity of the film is attributed to the fact that the stackstructure can effectively decouple the defects between the layers and extend the water vapor permeation path.
作者 许海飞 喻志农 程锦 栗旭阳 陈永华 李言 薛建设 XU Haifei;YU Zhinong;CHENG Jin;LI Xuyang;CHEN Yonghua;LI Yan;XU E Jianshe(School of Optics and Photonics*Beijing Institute of Technol.,Beijing 100081,CHN;Beijing BOE Optoelectronics Technol.Co.Ltd.,Beijing 100176,CHN)
出处 《半导体光电》 CAS 北大核心 2019年第5期643-648,共6页 Semiconductor Optoelectronics
基金 国家自然科学基金项目(61675024)
关键词 PECVD SINX SiOxNy 水汽渗透速率 叠层 弯曲 PECVD SiNx SiOxNy water vapor transmission rate stacks bending
  • 相关文献

参考文献2

二级参考文献42

  • 1龚灿锋,席珍强,王晓泉,杨德仁,阙端麟.热处理对氮化硅薄膜光学和电学性能的影响[J].太阳能学报,2006,27(3):300-303. 被引量:7
  • 2Jana, T.; Mukhopadhyay, S.; Ray, S. Sol. Energy Mater. Sol. Cells 2002, 71 (2), 197.
  • 3Nij s, J. Advanced Silicon and Semiconducting Silicon-alloy Based Materials and Devices; Taylor & Francis: Bristol, 1994.
  • 4Duerinckx, F.; Szlufcik, J. Sol. Energy Mater. Sol. Cells 2002, 72 (1-4), 231.
  • 5Schmidt, J.; Kerr, M. Sol. Energy Mater. Sol. Cells 2001, 65 (1-4), 585.
  • 6Soppe, W.; Rieffe, H.; Weeber, A. Progress in Photovoltaics- Research and Applications 2005, 13 (7), 551.
  • 7Santana, G.; Morales-Acevedo, A. Sol. Energy Mater. Sol. Cells 2000, 60 (2), 135.
  • 8Lauinger, T.; Moschner, J.; Aberle, A.; Hezel, R. J. Vac. Sci. Technol. A- Vacuum, Surfaces, and Films 1998, 16, 530.
  • 9Yoo, J.; Dhungel, S.; Yi, J. Thin Solid Films 2007, 515 (12), 5000.
  • 10Dauwe, S. Low-temperature Surface Passivation of Crystalline Silicon and Its Application to the Rear Side of Solar Cells. Ph. D. Dissertation, Hannover University, Germany, 2004.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部