期刊文献+

基于混沌粒子群优化支持向量机的变压器故障诊断 被引量:15

Fault Diagnosis of Transformers Based on Support Vector Machine with Improved Particle Swarm Optimization
原文传递
导出
摘要 为了提高电力变压器故障诊断的准确性,也要克服人工神经网络(ANN)中存在的收敛速度慢、容易陷入局部极值等缺陷,提出一种混沌的粒子群优化支持向量机的变压器诊断方法,该方法不仅具有很强的全局搜索能力,而且适用于支持向量机(SVM)参数优化,提高算法的鲁棒性.首先利用混沌的粒子群算法优化支持向量机的参数,把气体的特征参数代入优化的支持向量机分类模型中进行诊断,能够准确地分类变压器故障,从而达到故障诊断的目的.实验结果与常规方法比较,该方法能简单有效,诊断速度快,诊断正确率高. In order to improve the accuracy of fault diagnosis of power transformer and solve the problem of local optimal solution and low convergence rate existed in artificial neural networks(ANN),we presented a method based on support vector machine(SVM)with chaos particle swarm optimization(CPSO)for fault diagnosis of transformer.The method not only has strong global search capability and robustness,but also is very easy to implement.First,the chaos particle swarm optimization is suitable to determine free parameters of SVM.Second,the CPSO-SVM classifiers with the dissolved gas analysis can achieve diagnostic accuracy.Finally,fault diagnosis of power transformer was realized.The experimental results indicate that the method is simpler,faster and more accurate compared with the traditional algorithm.
作者 谭贵生 石宜金 刘丹丹 李留文 TAN Guisheng;SHI Yijin;LIU Dandan;LI Liuwen(Tourism and Culture College,Yunnan University,Lijiang 674100,China;Lijiang Power Supply Bureau of Yunnan Power Grid Corporation,Lijiang 674100,China)
出处 《昆明理工大学学报(自然科学版)》 CAS 北大核心 2019年第5期54-61,共8页 Journal of Kunming University of Science and Technology(Natural Science)
基金 云南电网有限责任公司基金项目(YNKJXM20180306) 云南省教育厅基金项目(2016ZDX261) 云南大学旅游文化学院基金项目(2017XY19)
关键词 变压器 故障诊断 粒子群优化 支持向量机 参数优化 transformer fault diagnosis chaos particle swarm optimization(CPSO) support vector machine(SVM) parameter optimization
  • 相关文献

参考文献10

二级参考文献109

  • 1孙才新.输变电设备状态在线监测与诊断技术现状和前景[J].中国电力,2005,38(2):1-7. 被引量:174
  • 2王永强,律方成,李和明.基于粗糙集理论和贝叶斯网络的电力变压器故障诊断方法[J].中国电机工程学报,2006,26(8):137-141. 被引量:99
  • 3Muthanna K T,Sarkar K,Waldner K.Transformer insulation life assessment[J].IEEE Transactions on Power Delivery,2006,21(1):150-156.
  • 4Singh J,Sood Y R,Jarial R K,et al.Condition monitoring of power transformers-bibliography survey[J].IEEE Electrical Insulation Magazine,2008,24(3):11-25.
  • 5Duval M,de Pablo A.Interpretation of gas-in-oil analysis using new IEC publication 60599 and IEC TC 10 databases[J].IEEE Electrical Insulation Magazine,2001,17(2):31-41.
  • 6Tang W H,Goulermas J Y,Wu Q H,et al.A probabilistic classifier for transformer dissolved gas analysis with a particle swarm optimizer[J].IEEE Transactions on Power Delivery,2008,23(2):751-759.
  • 7IEEE Standard C57.104-2008 IEEE guide for the interpretation of gases generated in oil-immersed transformers[S],2008.
  • 8ZhangY,DingX,Liu Y,etal.An artificial neural network approach to transformer fault diagnosis[J].IEEE Transactions on Power Delivery,1996,11(4):1836-1841.
  • 9Meng K,Dong Z Y,Wang D H,et al.A self-adaptive RBF neural network classifier for transformer fault analysis[J].IEEE Transactions on Power Systems,2010,25(3):1350-1360.
  • 10Fei S W,Sun Y.Forecasting dissolved gases content in power transformer oil based on support vector machine with genetic algorithm[J].Electrical Power Systems Research,2008,78(3):507-514.

共引文献247

同被引文献204

引证文献15

二级引证文献221

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部